RepServer: Antigen Receptor Repertoire Analysis Pipelines via the WWW

RepServer:通过 WWW 的抗原受体库分析管道

基本信息

  • 批准号:
    8636990
  • 负责人:
  • 金额:
    $ 64.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-04-01 至 2017-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): An organism's ability to mount an effective immune response after infection or vaccination depends on the type of antibodies and antigen receptors produced by its immune system cells. This set of molecules also plays an important role in the pathogenesis of many kinds of disease, such as autoimmune disease, lymphoma, and leukemia. Thus, analysis of an individual's repertoire of such molecules is applied in a wide variety of basic research, research and development, and clinical contexts. Despite the importance and complexity of repertoire analysis, there is currently no suite of software tools for analysis of repertoire data. Tools exist for only a subset of analysis tasks, and those that do exist were developed for use on a single project by a single research group. These tools do not function together and cannot be utilized in new studies without modification that requires bioinformatics expertise, leaving researchers to perform repetitive and error-prone tasks by hand, to develop internal, idiosyncratic algorithms not easily generalizable or systematically applied, and to expend significant manual labor reformatting primary and derived data for passing between tools. This approach is not only error-prone and time- and labor-intensive, but it comes at the expense of reproducibility, both within and between research groups. We propose to address this critical barrier to progress by developing RepServer, a suite of interoperable repertoire analysis tools and an interface that allows users to upload a set of repertoire sequences and pass them through a seamless workflow that executes all steps in the analysis and generates an analysis report complete with data summary tables, statistical analyses, figures, and workflow logs. The impact of RepServer will be significant. RepServer will improve the efficiency of repertoire analysis by reducing duplication of effort and eliminating the need for significant manual manipulation of data. The latter will in turn improve the accuracy and reliability of analyses by reducing errors. RepServer will make sophisticated computational analyses of repertoires accessible to bench biologists and clinicians. RepServer will provide the infrastructure for reproducibility, a critical step towards translation of repertoire analysis into clinical settings. RepServer will have impact in all areas of research, development, and clinical practice that rely on repertoire analysis.
描述(由申请人提供):生物体在感染或接种疫苗后产生有效免疫应答的能力取决于其免疫系统细胞产生的抗体和抗原受体的类型。这组分子在许多疾病的发病机制中也起着重要作用,如自身免疫性疾病、淋巴瘤和白血病。因此,对个体的此类分子库的分析应用于各种各样的基础研究、研发和临床背景中。尽管库分析的重要性和复杂性,目前还没有一套软件工具用于分析库数据。现有的工具仅用于分析任务的一个子集,并且那些确实存在的工具是由单个研究小组开发用于单个项目的。这些工具不能一起工作,不能在新的研究中使用,而不需要修改,需要生物信息学专业知识,让研究人员手工执行重复和容易出错的任务,开发内部的,特殊的算法不容易推广或系统应用,并花费大量的手工劳动重新格式化的主要和衍生数据之间的工具。这种方法不仅容易出错,而且耗时耗力,而且以牺牲研究组内部和研究组之间的可重复性为代价。我们建议通过开发RepServer来解决这一阻碍进展的关键障碍,这是一套可互操作的库分析工具和一个界面,允许用户上传一组库序列并将其传递给无缝工作流程,该工作流程执行分析中的所有步骤并生成包含数据汇总表、统计分析、图表和工作流程日志的分析报告。RepServer的影响将是巨大的。RepServer将通过减少重复工作和消除对大量人工操作数据的需要,提高剧目分析的效率。后者又将通过减少误差来提高分析的准确性和可靠性。RepServer将为实验室生物学家和临床医生提供复杂的计算分析。RepServer将提供再现性的基础设施,这是将库分析转化为临床环境的关键一步。RepServer将对依赖于剧目分析的研究、开发和临床实践的所有领域产生影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

LINDSAY G. COWELL其他文献

LINDSAY G. COWELL的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('LINDSAY G. COWELL', 18)}}的其他基金

i-AKC: Integrated AIRR Knowledge Commons
i-AKC:综合 AIRR 知识共享
  • 批准号:
    10712558
  • 财政年份:
    2023
  • 资助金额:
    $ 64.15万
  • 项目类别:
Adaptive Immune Receptor Repertoire (AIRR) Community Meeting 2021
2021 年适应性免疫受体库 (AIRR) 社区会议
  • 批准号:
    10391133
  • 财政年份:
    2021
  • 资助金额:
    $ 64.15万
  • 项目类别:
RepServer: Antigen Receptor Repertoire Analysis Pipelines via the WWW
RepServer:通过 WWW 的抗原受体库分析管道
  • 批准号:
    8822801
  • 财政年份:
    2012
  • 资助金额:
    $ 64.15万
  • 项目类别:
RepServer: Antigen Receptor Repertoire Analysis Pipelines via the WWW
RepServer:通过 WWW 的抗原受体库分析管道
  • 批准号:
    8449574
  • 财政年份:
    2012
  • 资助金额:
    $ 64.15万
  • 项目类别:
RepServer: Antigen Receptor Repertoire Analysis Pipelines via the WWW
RepServer:通过 WWW 的抗原受体库分析管道
  • 批准号:
    8222618
  • 财政年份:
    2012
  • 资助金额:
    $ 64.15万
  • 项目类别:
Immune System Biological Networks:Case Study Improved Data Integration & Analysis
免疫系统生物网络:案例研究改进的数据集成
  • 批准号:
    7927981
  • 财政年份:
    2009
  • 资助金额:
    $ 64.15万
  • 项目类别:
Immune System Biological Networks:Case Study Improved Data Integration & Analysis
免疫系统生物网络:案例研究改进的数据集成
  • 批准号:
    8246147
  • 财政年份:
    2009
  • 资助金额:
    $ 64.15万
  • 项目类别:
Immune System Biological Networks:Case Study Improved Data Integration & Analysis
免疫系统生物网络:案例研究改进的数据集成
  • 批准号:
    8147764
  • 财政年份:
    2008
  • 资助金额:
    $ 64.15万
  • 项目类别:
Immune System Biological Networks:Case Study Improved Data Integration & Analysis
免疫系统生物网络:案例研究改进的数据集成
  • 批准号:
    7690285
  • 财政年份:
    2008
  • 资助金额:
    $ 64.15万
  • 项目类别:
Immune System Biological Networks:Case Study Improved Data Integration & Analysis
免疫系统生物网络:案例研究改进的数据集成
  • 批准号:
    7437571
  • 财政年份:
    2008
  • 资助金额:
    $ 64.15万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.15万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 64.15万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 64.15万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 64.15万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 64.15万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 64.15万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 64.15万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 64.15万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 64.15万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 64.15万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了