Immune System Biological Networks:Case Study Improved Data Integration & Analysis
免疫系统生物网络:案例研究改进的数据集成
基本信息
- 批准号:7437571
- 负责人:
- 金额:$ 40.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-22 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAreaBacteremiaBiologicalBiologyBiomedical ResearchBlood CirculationCandidate Disease GeneCase StudyCellsClinicalClinical DataCollaborationsCommunitiesComplexDataData AnalysesDevelopmentDiseaseFaceFoundationsGenesGenotypeGoalsImmune responseImmune systemInfectionInfectious Diseases ResearchInformation ResourcesKnowledgeLinkMethodsMolecularOntologyOrganismOther ResourcesOutcomePathogenesisPathway interactionsPatientsProcessPurposeRepresentations, Knowledge (Computer)ResearchResourcesRetrievalSample SizeSourceStaphylococcus aureusStructureSystemTaxonomyTestingTherapeuticTranslational ResearchTranslationsbasedata integrationdesignimprovedinformation organizationnovel diagnosticsnovel therapeuticspathogensuccesssyntaxtherapeutic targettranslational medicine
项目摘要
DESCRIPTION (provided by applicant): Progress in biomedical research and its translation into clinical practice require the integration of data across multiple scales (molecules, cells, organisms), organism types, and fields of research. The need for data integration is especially acute in infectious disease research where organisms interact on all scales, and these interactions result in the emergence of processes and structures specific to these interactions. True data integration, the ability to jointly interpret and analyze data of heterogeneous types, depends on the ability to link data to information about the biological entities to which the data refer. In the face of rapidly growing volumes of data and information, it is imperative that this link from data to information be computable. Automated processing of the links between data and information requires that they be expressed using a common, formalized system for knowledge representation. Efforts at knowledge representation in biology have focused on either ontology development or pathway representation. While the value of both is unquestionable, neither fully supports the data and information integration needs of infectious disease research. We propose an ontology-based approach to pathway representation that extends ontologies beyond single taxonomies and pathway representations to all levels of granularity, thereby allowing the representation of complex biological systems. Our approach builds upon existing ontologies and pathway representations but is grounded in formal ontological and logical principles. Our overall goal is to test empirically the degree to which the ontology-based representation can improve data interpretation and analysis for translational medicine. We will take as our case study Staphylococcus aureus infection, utilizing the invaluable data resources of the Duke Staphylococcus aureus Bacteremia Group. We will achieve our goal through the following three specific aims: 1. Create an ontology-based representation of host-pathogen interactions, focusing on Staphylococcus aureus bacteremia. 2. Empirically test the ability of the ontology-based representation created in Aim 1 to improve data analysis and interpretation by using the representation to predict disease genes associated with Staphylococcus aureus bacteremia. 3. Empirically test the impact of the ontology-based representation created in Aim 1 on understanding of Staphylococcus aureus pathogenesis, on identification of novel therapeutic targets, and on improvement to patient management by testing experimentally the disease gene predictions made under Aim 2. The anticipated outcomes are: an ontology-based method for the representation of complex biological systems and an ontology of host-pathogen interactions, both subjected to tests designed to demonstrate their utility to clinical and translational research; an improved understanding of the immune response to bacterial pathogens; and the identification of genes associated with Staphylococcus aureus bacteremia that can be used to develop novel diagnostics and therapeutics.The resources developed under this proposal will directly improve data integration, retrieval and analysis, will support cross-disciplinary collaborations within infectious disease research, and will provide a foundation from which to develop similar resources for other areas in biomedicine, thus significantly impacting biomedical research and translational medicine.
描述(申请人提供):生物医学研究的进展及其转化为临床实践需要跨多个尺度(分子、细胞、生物体)、生物体类型和研究领域的数据集成。在传染病研究中,对数据整合的需求尤其迫切,在传染病研究中,生物体在所有范围内相互作用,这些相互作用导致出现特定于这些相互作用的过程和结构。真正的数据集成,即联合解释和分析不同类型的数据的能力,取决于将数据链接到数据所涉及的生物实体的信息的能力。面对迅速增长的数据量和信息量,从数据到信息的这种联系必须是可计算的。要自动处理数据和信息之间的链接,需要使用通用的正式知识表示系统来表示它们。生物学中的知识表示的努力要么集中在本体开发上,要么集中在路径表示上。虽然两者的价值都是毋庸置疑的,但它们都不能完全支持传染病研究的数据和信息集成需求。我们提出了一种基于本体的路径表示方法,它将本体从单一的分类和路径表示扩展到所有级别的粒度,从而允许对复杂生物系统的表示。我们的方法建立在现有的本体论和路径表示的基础上,但基于形式的本体论和逻辑原则。我们的总体目标是经验性地测试基于本体的表示可以在多大程度上改进对转化医学的数据解释和分析。我们将以金黄色葡萄球菌感染为例,利用杜克大学金黄色葡萄球菌菌血症小组的宝贵数据资源。我们将通过以下三个具体目标来实现我们的目标:1.创建基于本体的宿主-病原体相互作用的表示,重点关注金黄色葡萄球菌菌血症。2.经验性地测试在目标1中创建的基于本体的表示通过使用该表示来预测与金黄色葡萄球菌菌血症相关的疾病基因来改进数据分析和解释的能力。3.经验性地测试在目标1中创建的基于本体的表示对于理解金黄色葡萄球菌的致病机理、识别新的治疗靶点以及通过实验测试目标2中所做出的疾病基因预测对改善患者管理的影响。预期的结果是:用于表示复杂生物系统的基于本体的方法和宿主-病原体相互作用的本体,两者都经受了旨在证明其对临床和翻译研究的有效性的测试;对细菌病原体的免疫反应的更好的理解;根据这一提议开发的资源将直接改善数据整合、检索和分析,将支持传染病研究中的跨学科合作,并将为生物医学其他领域开发类似资源提供基础,从而显著影响生物医学研究和转化医学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LINDSAY G. COWELL其他文献
LINDSAY G. COWELL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LINDSAY G. COWELL', 18)}}的其他基金
Adaptive Immune Receptor Repertoire (AIRR) Community Meeting 2021
2021 年适应性免疫受体库 (AIRR) 社区会议
- 批准号:
10391133 - 财政年份:2021
- 资助金额:
$ 40.52万 - 项目类别:
RepServer: Antigen Receptor Repertoire Analysis Pipelines via the WWW
RepServer:通过 WWW 的抗原受体库分析管道
- 批准号:
8822801 - 财政年份:2012
- 资助金额:
$ 40.52万 - 项目类别:
RepServer: Antigen Receptor Repertoire Analysis Pipelines via the WWW
RepServer:通过 WWW 的抗原受体库分析管道
- 批准号:
8636990 - 财政年份:2012
- 资助金额:
$ 40.52万 - 项目类别:
RepServer: Antigen Receptor Repertoire Analysis Pipelines via the WWW
RepServer:通过 WWW 的抗原受体库分析管道
- 批准号:
8449574 - 财政年份:2012
- 资助金额:
$ 40.52万 - 项目类别:
RepServer: Antigen Receptor Repertoire Analysis Pipelines via the WWW
RepServer:通过 WWW 的抗原受体库分析管道
- 批准号:
8222618 - 财政年份:2012
- 资助金额:
$ 40.52万 - 项目类别:
Immune System Biological Networks:Case Study Improved Data Integration & Analysis
免疫系统生物网络:案例研究改进的数据集成
- 批准号:
7927981 - 财政年份:2009
- 资助金额:
$ 40.52万 - 项目类别:
Immune System Biological Networks:Case Study Improved Data Integration & Analysis
免疫系统生物网络:案例研究改进的数据集成
- 批准号:
8246147 - 财政年份:2009
- 资助金额:
$ 40.52万 - 项目类别:
Immune System Biological Networks:Case Study Improved Data Integration & Analysis
免疫系统生物网络:案例研究改进的数据集成
- 批准号:
8147764 - 财政年份:2008
- 资助金额:
$ 40.52万 - 项目类别:
Immune System Biological Networks:Case Study Improved Data Integration & Analysis
免疫系统生物网络:案例研究改进的数据集成
- 批准号:
7690285 - 财政年份:2008
- 资助金额:
$ 40.52万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 40.52万 - 项目类别:
Standard Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 40.52万 - 项目类别:
Major Research Instrumentation
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 40.52万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 40.52万 - 项目类别:
Research Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 40.52万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 40.52万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 40.52万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 40.52万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 40.52万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 40.52万 - 项目类别:
Standard Grant














{{item.name}}会员




