Identification, Extraction and Display of Clinical Data Patterns with Application to Anesthesia Workflows
临床数据模式的识别、提取和显示及其在麻醉工作流程中的应用
基本信息
- 批准号:9051683
- 负责人:
- 金额:$ 7.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-02-01 至 2016-04-29
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAnesthesia proceduresAnestheticsApgar ScoreBig DataCaringCharacteristicsChargeClinicalClinical DataCodeCommunitiesComplexComputing MethodologiesDataData DisplayData ScienceDevelopmentDrug Delivery SystemsEffectivenessElectronic Health RecordEnsureFaceFeedbackFortuneGoalsHemorrhageICD-9ImageryInstitutionIntravenousLaboratoriesLearningLeftMeasurementMeasuresMedicalMedical HistoryMedicineMethodsOnline SystemsOperative Surgical ProceduresPatientsPatternPharmaceutical PreparationsPhenotypePopulationProceduresProviderResearchResolutionRiskRoleScheduleSeedsSiliconTechniquesTest ResultTestingTextTimeTimeLineWorkclinical careclinical practicecognitive processcognitive taskcohortdesignexperiencehemodynamicsimprovedinnovationiterative designmedical specialtiesmemberstatisticssupport toolstooltrend
项目摘要
The goal of this project is to use cutting-edge methods from the data science/Big Data community to provide
rapidly interpretable visualizations of complex clinical data patterns that allow clinicians to quickly answer
selected clinical questions that they face many times a day. The traditional Electronic Health Record display
formats of tabular numeric data and narrative clinical text make it difficult to identify complex relationships
and trends among several variables at once, particularly if those relationships change over time. We have
previously developed computational methods to identify clinically important, time-changing relationships and
patterns among medical data, and in this project we seek to extend those methods and produce tailored
visualizations of the discovered patterns to support specific clinical tasks that cover the spectrum of
understanding patients, procedures, and populations.
Specifically, we seek to support the cognitive tasks involved in answering the following broad clinical
questions: 1) What is the preoperative clinical status of this patient? 2) What are the common anesthetic
approaches for this surgical procedure? And 3) What is the acuity level and complexity of each patient in the
population of those who will be operated on tomorrow? We selected these specific questions from the clinical
domain of anesthesia because that domain has fairly consistent practices between institutions, but we intend
for our solutions to be easily extendable to analogous questions across clinical specialties.
This project includes developing web-based tools that clinicians can use to answer these questions during
their daily clinical practice. We plan an iterative development approach, starting with qualitative user studies
of workflows and information needs relevant to the three questions, and followed by design iterations that
include end-user clinician feedback at each iteration. Additionally, we will consider at design time possible
barriers to adoption, rather than leaving this until deployment time, and we expect to be able to lower those
barriers with appropriate design decisions.
If successful, this project will facilitate the daily practice of clinical care, increasing its efficiency,
effectiveness, and quality.
该项目的目标是使用数据科学/大数据社区的前沿方法来提供
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Lasko其他文献
Thomas Lasko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Lasko', 18)}}的其他基金
Data-Driven Guidance for Timing Repeated Inpatient Laboratory Tests
重复住院实验室测试时间的数据驱动指南
- 批准号:
10450243 - 财政年份:2022
- 资助金额:
$ 7.05万 - 项目类别:
Data-Driven Guidance for Timing Repeated Inpatient Laboratory Tests
重复住院实验室测试时间的数据驱动指南
- 批准号:
10599337 - 财政年份:2022
- 资助金额:
$ 7.05万 - 项目类别:
Identification, Extraction and Display of Clinical Data Patterns with Application to Anesthesia Workflows
临床数据模式的识别、提取和显示及其在麻醉工作流程中的应用
- 批准号:
9248768 - 财政年份:2016
- 资助金额:
$ 7.05万 - 项目类别:
Identification, Extraction and Display of Clinical Data Patterns with Application to Anesthesia Workflows
临床数据模式的识别、提取和显示及其在麻醉工作流程中的应用
- 批准号:
9420613 - 财政年份:2016
- 资助金额:
$ 7.05万 - 项目类别:
Scalable Biomedical Pattern Recognition Via Deep Learning
通过深度学习进行可扩展的生物医学模式识别
- 批准号:
9302040 - 财政年份:2013
- 资助金额:
$ 7.05万 - 项目类别:
Scalable Biomedical Pattern Recognition Via Deep Learning
通过深度学习进行可扩展的生物医学模式识别
- 批准号:
8689173 - 财政年份:2013
- 资助金额:
$ 7.05万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 7.05万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 7.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 7.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 7.05万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 7.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 7.05万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 7.05万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 7.05万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 7.05万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 7.05万 - 项目类别:
Standard Grant