Identification, Extraction and Display of Clinical Data Patterns with Application to Anesthesia Workflows
临床数据模式的识别、提取和显示及其在麻醉工作流程中的应用
基本信息
- 批准号:9420613
- 负责人:
- 金额:$ 40.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-02-01 至 2020-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAnesthesia proceduresAnestheticsApgar ScoreBig DataCaringCharacteristicsChargeClinicalClinical DataCodeCommunitiesComplexComputing MethodologiesDataData DisplayData ScienceDevelopmentDrug Delivery SystemsEffectivenessElectronic Health RecordEnsureFaceFeedbackFortuneGoalsHemorrhageICD-9ImageryInstitutionIntravenousLaboratoriesLearningMeasurementMeasuresMedicalMedical HistoryMedicineMethodsOperative Surgical ProceduresPatientsPatternPharmaceutical PreparationsPhenotypePopulationProceduresProviderResearchResearch Project GrantsResolutionRiskRoleScheduleSeedsSiliconTechniquesTest ResultTestingTextTimeTimeLineVisualization softwareWorkclinical careclinical practicecognitive processcognitive taskcohortdesignexperiencehemodynamicsimprovedinnovationiterative designmedical specialtiesmemberstatisticssupport toolstooltrendweb-based tool
项目摘要
The goal of this project is to use cutting-edge methods from the data science/Big Data community to provide
rapidly interpretable visualizations of complex clinical data patterns that allow clinicians to quickly answer
selected clinical questions that they face many times a day. The traditional Electronic Health Record display
formats of tabular numeric data and narrative clinical text make it difficult to identify complex relationships
and trends among several variables at once, particularly if those relationships change over time. We have
previously developed computational methods to identify clinically important, time-changing relationships and
patterns among medical data, and in this project we seek to extend those methods and produce tailored
visualizations of the discovered patterns to support specific clinical tasks that cover the spectrum of
understanding patients, procedures, and populations.
Specifically, we seek to support the cognitive tasks involved in answering the following broad clinical
questions: 1) What is the preoperative clinical status of this patient? 2) What are the common anesthetic
approaches for this surgical procedure? And 3) What is the acuity level and complexity of each patient in the
population of those who will be operated on tomorrow? We selected these specific questions from the clinical
domain of anesthesia because that domain has fairly consistent practices between institutions, but we intend
for our solutions to be easily extendable to analogous questions across clinical specialties.
This project includes developing web-based tools that clinicians can use to answer these questions during
their daily clinical practice. We plan an iterative development approach, starting with qualitative user studies
of workflows and information needs relevant to the three questions, and followed by design iterations that
include end-user clinician feedback at each iteration. Additionally, we will consider at design time possible
barriers to adoption, rather than leaving this until deployment time, and we expect to be able to lower those
barriers with appropriate design decisions.
If successful, this project will facilitate the daily practice of clinical care, increasing its efficiency,
effectiveness, and quality.
该项目的目标是使用数据科学/大数据社区的尖端方法,
复杂临床数据模式的快速可解释的可视化,使临床医生能够快速回答
选择他们每天要面对很多次的临床问题。传统的电子健康记录显示
表格数字数据和叙述性临床文本的格式使得难以识别复杂的关系
以及几个变量之间的趋势,特别是如果这些关系随着时间的推移而变化。我们有
以前开发的计算方法,以确定临床上重要的,随时间变化的关系,
在这个项目中,我们试图扩展这些方法,并为我们的医疗数据提供定制的服务。
可视化所发现的模式,以支持特定的临床任务,
了解患者、程序和人群。
具体来说,我们寻求支持参与回答以下广泛临床问题的认知任务。
问题:1)该患者术前的临床状况如何?2)常用麻醉药有哪些
这种手术的方法吗以及3)在治疗中每个患者的敏锐度水平和复杂性是什么?
明天要做手术的人有多少?我们从临床上选择了这些特定的问题,
麻醉领域,因为该领域在机构之间有相当一致的实践,但我们打算
我们的解决方案可以很容易地扩展到跨临床专业的类似问题。
该项目包括开发基于网络的工具,临床医生可以用来回答这些问题,
日常临床实践。我们计划一个迭代的开发方法,从定性的用户研究开始
的工作流程和信息需求相关的三个问题,然后是设计迭代,
包括终端用户临床医生反馈。此外,我们将在设计时考虑可能的
采用的障碍,而不是将其留到部署时,我们希望能够降低这些障碍
合理的设计决策。
如果成功,该项目将促进临床护理的日常实践,提高其效率,
效率和质量。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Visualization of aggregate perioperative data improves anesthesia case planning: A randomized, cross-over trial.
- DOI:10.1016/j.jclinane.2020.110114
- 发表时间:2021-03
- 期刊:
- 影响因子:6.7
- 作者:Wanderer JP;Lasko TA;Coco JR;Fowler LC;McEvoy MD;Feng X;Shotwell MS;Li G;Gelfand BJ;Novak LL;Owens DA;Fabbri DV
- 通讯作者:Fabbri DV
A Perioperative Care Display for Understanding High Acuity Patients.
用于了解高危患者的围手术期护理展示。
- DOI:10.1055/s-0041-1723023
- 发表时间:2021
- 期刊:
- 影响因子:2.9
- 作者:Novak,LaurieLovett;Wanderer,Jonathan;Owens,DavidA;Fabbri,Daniel;Genkins,JulianZ;Lasko,ThomasA
- 通讯作者:Lasko,ThomasA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Lasko其他文献
Thomas Lasko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Lasko', 18)}}的其他基金
Data-Driven Guidance for Timing Repeated Inpatient Laboratory Tests
重复住院实验室测试时间的数据驱动指南
- 批准号:
10450243 - 财政年份:2022
- 资助金额:
$ 40.68万 - 项目类别:
Data-Driven Guidance for Timing Repeated Inpatient Laboratory Tests
重复住院实验室测试时间的数据驱动指南
- 批准号:
10599337 - 财政年份:2022
- 资助金额:
$ 40.68万 - 项目类别:
Identification, Extraction and Display of Clinical Data Patterns with Application to Anesthesia Workflows
临床数据模式的识别、提取和显示及其在麻醉工作流程中的应用
- 批准号:
9248768 - 财政年份:2016
- 资助金额:
$ 40.68万 - 项目类别:
Identification, Extraction and Display of Clinical Data Patterns with Application to Anesthesia Workflows
临床数据模式的识别、提取和显示及其在麻醉工作流程中的应用
- 批准号:
9051683 - 财政年份:2016
- 资助金额:
$ 40.68万 - 项目类别:
Scalable Biomedical Pattern Recognition Via Deep Learning
通过深度学习进行可扩展的生物医学模式识别
- 批准号:
9302040 - 财政年份:2013
- 资助金额:
$ 40.68万 - 项目类别:
Scalable Biomedical Pattern Recognition Via Deep Learning
通过深度学习进行可扩展的生物医学模式识别
- 批准号:
8689173 - 财政年份:2013
- 资助金额:
$ 40.68万 - 项目类别:
相似海外基金
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 40.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 40.68万 - 项目类别:
Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 40.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 40.68万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 40.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 40.68万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 40.68万 - 项目类别:
Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 40.68万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 40.68万 - 项目类别:
EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 40.68万 - 项目类别:
Standard Grant