Tensor-based Dictionary Learning for Imaging Biomarkers
用于成像生物标志物的基于张量的字典学习
基本信息
- 批准号:9143765
- 负责人:
- 金额:$ 23.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-11 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAreaBig DataBiological MarkersChileClinicalClinical TrialsComputer softwareDataData SetDatabasesDevelopmentDiagnostic testsDictionaryDiseaseDoseEpigenetic ProcessFrequenciesGoalsGrantHealthIndividualLearningLinkLung CAT ScanMachine LearningMalignant NeoplasmsMalignant neoplasm of lungMedical ImagingMethodologyMethodsMiningMonitorPatientsPhysiologicalPilot ProjectsProcessResearchScreening ResultSensitivity and SpecificitySiteSpeedStagingSystemTechniquesTestingX-Ray Computed Tomographyanaloganticancer researchbaseclinical applicationdata mininggenome sequencinggenome wide association studyimaging biomarkerimaging informaticsimprovedin vivo imaginginnovationlearning strategylow-dose spiral CTlung cancer screeningnovelphenomephenotypic biomarkerpredictive modelingradiologistreconstructionscreeningsoftware developmenttreatment responsetumortumor progression
项目摘要
DESCRIPTION (provided by applicant): As a central concept in systems biomedicine, biomarkers are multi-scale, diverse, and inter-connected indicators of physiological and pathological states and activities. Over the past decade, the research in this area has been active and exciting, including imaging informatics based on imaging biomarkers. In this context, the genome-wide association studies are being performed to establish fundamental links between genotypic and phenotypic biomarkers but a prime challenge is that progress along this direction has been far from what was widely expected. A critical observation is that while data are exploding from genome sequencing and epigenetic analysis, in most cases medical image features are still subjective or only defined in classic fashions, which seems an unreasonable imbalance between genotypic and phenotypic worlds. Lung cancer screening is an emerging CT application and an opportunity to identify imaging biomarkers. Like other cancers, lung cancer is not one but many diseases. It is different in each patient and even in each tumor site with overwhelming nonlinearity and dynamics. It is crystal-clear that comprehensive, adaptive and individualized therapies are needed to win the battle against lung cancer. Being consistent to this big picture, research on sophisticated, instead of simplistic, biomarkers is not only helpful but also necessary in cancer research, and imaging informatics must perform exclusive and intelligent mining through rich in vivo imaging data for biomarkers so that correlative and predictive models could be established. The general hypothesis behind this R21 project is that new phenotypic information can be unlocked in tomographic data to improve sensitivity and specificity significantly in lung cancer CT screening. The overall goal of this project is to develp a tensor-based dictionary learning approach for extraction of CT imaging biomarkers, and optimize a tensor-based locally linear embedding to use these biomarkers for differentiation between CT lung screening results. The major innovation of this project is to synergistically integrate tensor decomposition, dictionary learning, compressive sensing, low-dose reconstruction, machine learning, locally linear embedding, super-computing and big data mining into a brand-new imaging informatics approach, which can be viewed as "phenome sequencing" in analog of genome sequencing. Upon the successful completion of this project, the identified imaging biomarkers will have been demonstrated instrumental in reducing the false positive rate significantly for lung CT scans while the false negative rate is kept constant.It will also help accurately stage lung cancers and non-invasively monitor cancer progression and therapeutic response. Equally important is the technical significance of this project. If it is established, a lasting impact will be generated on the field of imaging informatics at large.
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Correlation coefficient based supervised locally linear embedding for pulmonary nodule recognition.
- DOI:10.1016/j.cmpb.2016.08.009
- 发表时间:2016-11
- 期刊:
- 影响因子:6.1
- 作者:Wu P;Xia K;Yu H
- 通讯作者:Yu H
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hengyong Yu其他文献
Hengyong Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hengyong Yu', 18)}}的其他基金
Unsupervised Deep Photon-Counting Computed Tomography Reconstruction for Human Extremity Imaging
用于人体肢体成像的无监督深度光子计数计算机断层扫描重建
- 批准号:
10718303 - 财政年份:2023
- 资助金额:
$ 23.32万 - 项目类别:
Development of Methods and Software for Interior Tomography Applications
内部断层扫描应用方法和软件的开发
- 批准号:
7669831 - 财政年份:2009
- 资助金额:
$ 23.32万 - 项目类别:
Data Consistency Based Motion Artifact Reduction for Head CT
基于数据一致性的头部 CT 运动伪影减少
- 批准号:
7491540 - 财政年份:2007
- 资助金额:
$ 23.32万 - 项目类别:
Data Consistency Based Motion Artifact Reduction for Head CT
基于数据一致性的头部 CT 运动伪影减少
- 批准号:
7384161 - 财政年份:2007
- 资助金额:
$ 23.32万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 23.32万 - 项目类别:
Standard Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 23.32万 - 项目类别:
Major Research Instrumentation
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 23.32万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 23.32万 - 项目类别:
Research Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 23.32万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 23.32万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 23.32万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 23.32万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 23.32万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 23.32万 - 项目类别:
Standard Grant