Inhibition of MCUR1-MCU mediated mitochondrial Ca2+ uptake prevents I/R injury
抑制 MCUR1-MCU 介导的线粒体 Ca2 摄取可预防 I/R 损伤
基本信息
- 批准号:9032520
- 负责人:
- 金额:$ 39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-04-01 至 2018-03-31
- 项目状态:已结题
- 来源:
- 关键词:ATP HydrolysisATP Synthesis PathwayAddressAnimal ModelAutophagocytosisBiochemicalBiochemistryBioenergeticsBiological ModelsBuffersCardiacCardiac MyocytesCardiovascular DiseasesCell DeathCell Membrane PermeabilityCell SurvivalCell membraneCellsCellular biologyChargeComplexCouplingDiseaseDown-RegulationHealthHeartHomeostasisHypoxiaImageInner mitochondrial membraneIon ChannelIonsIschemiaLearningMaintenanceMediatingMembrane PotentialsMembrane Transport ProteinsMicaMitochondriaMitochondrial MatrixMitochondrial Membrane ProteinMolecularMutagenesisMyocardial IschemiaNatureOutcomeOxidation-ReductionOxidative StressPathologic ProcessesPathway interactionsPatternPhenotypePhosphorylationPhysiologicalPhysiological ProcessesPlayProductionProteinsRNA InterferenceRNA interference screenReactionReactive Oxygen SpeciesRegulationReperfusion InjuryReperfusion TherapyRestRoleShapesSideSignal TransductionStagingTechnologyTherapeutic InterventionTissuesTranscriptional RegulationTranslatingbasecalcium uniportercell typedriving forcein vivoin vivo Modelknock-downmitochondrial dysfunctionmitochondrial membranemitochondrial permeability transition poremouse modeloxidationpreventsmall hairpin RNAspatiotemporaluptake
项目摘要
DESCRIPTION (provided by applicant): Mitochondrial bioenergetics is crucial for cell survival and death. The bioenergetic maintenance primarily depends on the integrity of mitochondrial membranes. The impermeable nature of the mitochondrial inner membrane sets the stage for redox reactions to generate ATP. Mitochondria also participate in cytosolic Ca2+ phenotype via rapid Ca2+ buffering. There are two sides to the effects of Ca2+ on mitochondrial function. Under physiological conditions, Ca2+ is beneficial for mitochondrial function to stimulate oxidation-phosphorylation and ATP synthesis. It is questionable whether these effects remain the same under pathological conditions when mitochondrial Ca2+ ([Ca2+]m) overload occurs. While [Ca2+]m signaling is crucial for both physiological and pathological processes, molecules that facilitate [Ca2+]m uptake remain unclear. [Ca2+]m buffering is exquisitely controlled by inner mitochondrial membrane transporters, exchangers and uniporter. Several proteins have been implicated to participate in [Ca2+]m uptake, including LETM1, MICU1 and MCU. Our targeted RNAi screen identified a mitochondrial inner membrane protein, Mitochondrial Ca2+ Uniporter Regulator 1 (MCUR1) that augments [Ca2+]m uptake. MCUR1 silencing abrogates [Ca2+]m uptake under normal mitochondrial membrane potential. Our results demonstrate that MCUR1 interacts with the Ru360 sensitive core component of the mitochondrial uniporter complex, Mitochondrial Ca2+ Uniporter (MCU). Based on our recent discovery, we hypothesize that MCUR1 promotes MCU-dependent [Ca2+]m overload during I/R injury, triggering mitochondrial membrane depolarization, that results in bioenergetic collapse and mitochondrial dysfunction. This proposal applies RNAi technology, mutagenesis of MCUR1 and MCU channel, biochemical, state-of-the-art imaging and an animal model system to understand how MCUR1 elicits cardiomyocyte [Ca2+]m uptake. Based on our recent identification of MCUR1 as a regulator of the uniporter complex, here in Aim 1, we will characterize the MCUR1 role in cardiomyocyte [Ca2+]m uptake, critical regions of MCUR1-MCU interaction and transcriptional regulation of MCUR1. In Aim 2 we will investigate how MCUR1 controls mitochondrial bioenergetics, ROS production and autophagy. Finally, in Aim 3 we will apply cardiac ischemia/reperfusion in vivo murine model studies to show that knockdown of MCUR1 ameliorates I/R-induced mitochondrial dysfunction and cardiomyocyte damage. Overall, the results of these studies will advance our understanding of how MCU activity is augmented under pathophysiological conditions, and suggest new strategies for controlling [Ca2+]m influx as a new treatment for cardiovascular diseases.
描述(由申请人提供):线粒体生物能量学对细胞存活和死亡至关重要。生物能量的维持主要依赖于线粒体膜的完整性。线粒体内膜的不可渗透性为氧化还原反应创造了条件,从而产生ATP。线粒体也通过快速的Ca 2+缓冲作用参与细胞质Ca 2+表型。Ca ~(2+)对线粒体功能的影响具有两面性。在生理条件下,Ca 2+有利于线粒体功能,刺激氧化磷酸化和ATP合成。当线粒体Ca 2+([Ca 2 +]m)超载发生时,这些效应在病理条件下是否保持不变是值得怀疑的。虽然[Ca 2 +]m信号传导对于生理和病理过程都是至关重要的,但促进[Ca 2 +]m摄取的分子仍然不清楚。[Ca2+]m缓冲由线粒体内膜转运蛋白、交换蛋白和单向转运蛋白精确控制。有几种蛋白质参与了[Ca 2 +]m的摄取,包括LETM 1,MICU 1和MCU。我们的靶向RNAi筛选鉴定了一种线粒体内膜蛋白,线粒体Ca 2+单向转运体调节因子1(MCUR 1),其增强[Ca 2 +]m摄取。MCUR 1沉默消除正常线粒体膜电位下的[Ca 2 +]m摄取。我们的研究结果表明,MCUR 1相互作用的Ru 360敏感的核心组成部分的线粒体单向转运体复合物,线粒体Ca 2+单向转运体(MCU)。基于我们最近的发现,我们假设MCUR 1在I/R损伤期间促进MCU依赖性[Ca 2 +]m过载,触发线粒体膜去极化,导致生物能量崩溃和线粒体功能障碍。本研究应用RNAi技术、MCUR 1和MCU通道的突变、生物化学、最先进的成像和动物模型系统来了解MCUR 1如何促进心肌细胞[Ca 2 +]m摄取。基于我们最近鉴定MCUR 1作为单向转运体复合物的调节剂,在Aim 1中,我们将表征MCUR 1在心肌细胞[Ca 2 +]m摄取、MCUR 1-MCU相互作用的关键区域和MCUR 1的转录调节中的作用。在目标2中,我们将研究MCUR 1如何控制线粒体生物能量学,ROS产生和自噬。最后,在目标3中,我们将应用心脏缺血/再灌注体内小鼠模型研究来表明MCUR 1的敲低改善I/R诱导的线粒体功能障碍和心肌细胞损伤。总的来说,这些研究的结果将促进我们对MCU活性在病理生理条件下如何增强的理解,并提出控制[Ca 2 +]m内流作为心血管疾病新治疗的新策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MADESH MUNISWAMY其他文献
MADESH MUNISWAMY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MADESH MUNISWAMY', 18)}}的其他基金
Magnesium flux compendium: Discover ligands, channels, and metabolic signals
镁通量概要:发现配体、通道和代谢信号
- 批准号:
10662656 - 财政年份:2022
- 资助金额:
$ 39万 - 项目类别:
Magnesium flux compendium: Discover ligands, channels, and metabolic signals
镁通量概要:发现配体、通道和代谢信号
- 批准号:
10791996 - 财政年份:2022
- 资助金额:
$ 39万 - 项目类别:
Magnesium flux compendium: Discover ligands, channels, and metabolic signals
镁通量概要:发现配体、通道和代谢信号
- 批准号:
10405276 - 财政年份:2022
- 资助金额:
$ 39万 - 项目类别:
Magnesium flux compendium: Discover ligands, channels, and metabolic signals
镁通量概要:发现配体、通道和代谢信号
- 批准号:
10627888 - 财政年份:2022
- 资助金额:
$ 39万 - 项目类别:
Essential Role for SPG7 in Mitochondrial Permeability Transition Pore Assembly and Function
SPG7 在线粒体渗透性转变孔组装和功能中的重要作用
- 批准号:
10241316 - 财政年份:2020
- 资助金额:
$ 39万 - 项目类别:
Inhibition of MCUR1-MCU mediated mitochondrial Ca2+ uptake prevents I/R injury
抑制 MCUR1-MCU 介导的线粒体 Ca2 摄取可预防 I/R 损伤
- 批准号:
8694610 - 财政年份:2014
- 资助金额:
$ 39万 - 项目类别:
Molecular mechanism of Ca2+-induced mitochondrial shape transition in metazoans
Ca2+诱导后生动物线粒体形态转变的分子机制
- 批准号:
10062506 - 财政年份:2014
- 资助金额:
$ 39万 - 项目类别:
Molecular mechanism of Ca2+-induced mitochondrial shape transition in metazoans
Ca2+诱导后生动物线粒体形态转变的分子机制
- 批准号:
10527556 - 财政年份:2014
- 资助金额:
$ 39万 - 项目类别:
Inhibition of MCUR1-MCU mediated mitochondrial Ca2+ uptake prevents I/R injury
抑制 MCUR1-MCU 介导的线粒体 Ca2 摄取可预防 I/R 损伤
- 批准号:
8824559 - 财政年份:2014
- 资助金额:
$ 39万 - 项目类别:
Molecular mechanism of Ca2+-induced mitochondrial shape transition in metazoans
Ca2+诱导后生动物线粒体形态转变的分子机制
- 批准号:
10331786 - 财政年份:2014
- 资助金额:
$ 39万 - 项目类别:














{{item.name}}会员




