Magnesium flux compendium: Discover ligands, channels, and metabolic signals
镁通量概要:发现配体、通道和代谢信号
基本信息
- 批准号:10791996
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:Acinar CellBindingBiochemical ReactionBioenergeticsBiologicalBiophysicsBuffersCRISPR/Cas technologyCationsCell membraneCell modelCell physiologyCellsCellular biologyComplexCytosolDeficiency DiseasesDissociationEndosomesEnzymesEquilibriumEventFunctional disorderFundingFutureHomeostasisHormonalIon ChannelLaboratoriesLigandsLinkLysosomesMagnesiumMembraneMetabolicMetabolismMgATPMitochondriaMitochondrial MatrixMolecularNucleic AcidsNucleotidesOrganellesPhenotypePhysiologicalProteinsRNA interference screenRestRoleRouteShapesSignal PathwaySignal TransductionStimulusTestingWorkcofactorionizationmouse modelprogramsuptake
项目摘要
ABSTRACT/SUMMARY
Free ionized intracellular Mg2+ (iMg2+) is estimated to be in the range of 0.5–1.2 mM. In general, it is accepted
that under resting conditions, the concentration of ionized cytosolic Mg2+ is `muffled' by phosphometabolites,
nucleic acids and proteins. For example, ATP binds with a Kd value of 50 M-70 μM and therefore Mg2+ in the
cytosol and the mitochondrial matrix is primarily complexed with ATP (Mg-ATP2-). Because of its abundance (~5
mM), ATP is considered to be the largest iMg2+ `store'. Fluctuations in free cytosolic (cMg2+) following hormonal
stimuli have been touted as passive adjustments of Mg2+ dissociating from the exuberant Mg-ATP contingent
and other `buffered' pools of Mg2+. Apart from iMg2+ `buffering' mechanism, Mg2+ ion channels and transporters
controlling Mg2+ entry as well as efflux across the plasma membrane are thought to maintain the equilibrium of
free cMg2+. Currently, several candidates are correlated to Mg2+ entry machinery (TRPM6, TRPM7, MagT1), but
are still awaiting convincing biophysical and physiological evidence for such roles. The Mg2+/Na+ exchanger
SLC41A1 was proposed to contribute Mg2+ efflux from the cell, whereas Mrs2 was proposed as a mitochondrial
Mg2+ transporter. Very little is known about the molecular details of Mg2+ transport into/from cellular organelles
like the ER, mitochondria, endosomes and lysosomes. A few studies have speculated that free [Mg2+] in the ER
and mitochondria are likely to be similar to [cMg2+]. However, the temporal and spatial dynamics, let alone the
biological relevance of iMg2+ mobilization, remain a mystery in cell biology. Nevertheless, Mg2+ is an essential
cation controlling many biochemical reactions. Our recent work has shown that L-lactate acts as an activator that
triggers a dynamic transfer of Mg2+ between the ER and mitochondria to shape bioenergetics and cellular
metabolism (Cell 2020). Mechanistically, L-lactate stimulates Mg2+ release from the ER followed by Mg2+ uptake
by mitochondria. The mitochondrial localized Mrs2 transporter was found to be responsible for the accumulation
of Mg2+ in mitochondria. However, the L-lactate-induced ER release molecular machinery remains unidentified.
I propose to identify ER Mg2+ release component, plasma membrane entry machinery and the resultant
molecular signaling pathways. I will take advantage of unbiased RNAi screen and targeted CRISPR/Cas9 editing
approaches to answer these mysteries in the Mg2+ signaling field. Identification of these molecular machineries
would aid in our understanding of iMg2+ dynamics and the cause-effect relationships that exist between iMg2+ flux
and cellular processes. Additionally, I will test and define the Mg2+-dependent signaling events based on the
cellular and mouse model phenotypes. It is thrilling to define the molecular link between cellular Mg2+
homeostasis and physiological function. Our identification and characterization of the Mg2+ flux components will
further investigate how, and if, these signaling routes impinge on the pathophysiology of a growing number of
Mg2+ deficiency diseases in humankind. Overall, the R35/MIRA funding will support the testing of this
unconventional hypothesis and my laboratory will address these major mysteries in the near future.
摘要/摘要
细胞内游离镁离子(iMg2+)估计在0.5-1.2 mm的范围内。一般来说,它是被接受的。
在静息状态下,细胞内游离镁离子的浓度被磷代谢产物“抑制”,
核酸和蛋白质。例如,三磷酸腺苷与Kd值50M-70μM结合,因此在
胞浆和线粒体基质主要与三磷酸腺苷(mg-ATP2-)络合。因为它的丰度(~5
(Mm),ATP被认为是iMg2+最大的‘商店’。激素对游离胞浆(CMG2+)的影响
刺激被吹捧为对镁离子从旺盛的镁-三磷酸腺苷中解离出来的被动调整
以及其他有缓冲的镁离子池。除了iMg2+的缓冲机制外,镁离子通道和转运体
控制质膜上镁离子的进入和流出被认为是维持细胞内镁离子的平衡。
免费CMG2+。目前,有几个候选者与镁离子进入机制(TRPM6、TRPM7、MagT1)相关,但
仍在等待这种作用的令人信服的生物物理和生理证据。镁/钠离子交换剂
Slc41a1被认为是细胞中镁离子外流的贡献者,而mrs2被认为是线粒体
镁离子转运蛋白。关于镁离子进出细胞器的分子细节还知之甚少。
如内质网、线粒体、内切体和溶酶体。一些研究推测内质网中的游离[Mg2+]
线粒体很可能类似于[CMG2+]。然而,时间和空间动态,更不用说
IMg2+动员的生物学意义,在细胞生物学中仍然是一个谜。然而,镁离子是一种必需的
控制许多生化反应的阳离子。我们最近的工作表明,L-乳酸作为激活剂,
触发内质网和线粒体之间的镁离子动态转移,以形成生物能量学和细胞
代谢(细胞2020)。L乳酸盐促进内质网镁离子释放进而摄取镁离子的机制
通过线粒体。线粒体定位的mrs2转运蛋白被发现是导致这种积累的原因。
线粒体中镁离子的含量。然而,L-乳酸诱导内质网释放的分子机制尚不清楚。
我建议鉴定内质网镁离子释放组分、质膜进入机制以及由此产生的
分子信号通路。我将利用无偏见的RNAi屏幕和有针对性的CRISPR/Cas9编辑
在镁离子信号领域,解答这些谜团的方法。这些分子机制的鉴定
将有助于我们理解iMg2+的动力学以及iMg2+通量之间存在的因果关系
和细胞过程。此外,我还将测试和定义基于
细胞和小鼠模型表型。定义细胞内镁离子之间的分子联系是令人兴奋的
动态平衡和生理功能。我们对镁离子助熔剂成分的鉴定和表征将
进一步研究这些信号通路如何以及是否会影响越来越多的
人类中的镁缺乏症。总体而言,R35/Mira的资金将支持这一测试
非常规假说和我的实验室将在不久的将来解开这些重大谜团。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Negative modulation of mitochondrial calcium uniporter complex protects neurons against ferroptosis.
- DOI:10.1038/s41419-023-06290-1
- 发表时间:2023-11-25
- 期刊:
- 影响因子:9
- 作者:Marmolejo-Garza, Alejandro;Krabbendam, Inge E.;Luu, Minh Danh Anh;Brouwer, Famke;Trombetta-Lima, Marina;Unal, Osman;O'Connor, Shane J.;Majernikova, Nad'a;Elzinga, Carolina R. S.;Mammucari, Cristina;Schmidt, Martina;Madesh, Muniswamy;Boddeke, Erik;Dolga, Amalia M.
- 通讯作者:Dolga, Amalia M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MADESH MUNISWAMY其他文献
MADESH MUNISWAMY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MADESH MUNISWAMY', 18)}}的其他基金
Magnesium flux compendium: Discover ligands, channels, and metabolic signals
镁通量概要:发现配体、通道和代谢信号
- 批准号:
10662656 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Magnesium flux compendium: Discover ligands, channels, and metabolic signals
镁通量概要:发现配体、通道和代谢信号
- 批准号:
10405276 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Magnesium flux compendium: Discover ligands, channels, and metabolic signals
镁通量概要:发现配体、通道和代谢信号
- 批准号:
10627888 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Essential Role for SPG7 in Mitochondrial Permeability Transition Pore Assembly and Function
SPG7 在线粒体渗透性转变孔组装和功能中的重要作用
- 批准号:
10241316 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Inhibition of MCUR1-MCU mediated mitochondrial Ca2+ uptake prevents I/R injury
抑制 MCUR1-MCU 介导的线粒体 Ca2 摄取可预防 I/R 损伤
- 批准号:
8694610 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Molecular mechanism of Ca2+-induced mitochondrial shape transition in metazoans
Ca2+诱导后生动物线粒体形态转变的分子机制
- 批准号:
10062506 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Molecular mechanism of Ca2+-induced mitochondrial shape transition in metazoans
Ca2+诱导后生动物线粒体形态转变的分子机制
- 批准号:
10527556 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Inhibition of MCUR1-MCU mediated mitochondrial Ca2+ uptake prevents I/R injury
抑制 MCUR1-MCU 介导的线粒体 Ca2 摄取可预防 I/R 损伤
- 批准号:
8824559 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Inhibition of MCUR1-MCU mediated mitochondrial Ca2+ uptake prevents I/R injury
抑制 MCUR1-MCU 介导的线粒体 Ca2 摄取可预防 I/R 损伤
- 批准号:
9032520 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Molecular mechanism of Ca2+-induced mitochondrial shape transition in metazoans
Ca2+诱导后生动物线粒体形态转变的分子机制
- 批准号:
10331786 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:32170319
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
- 批准号:31372080
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
- 批准号:81172529
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
- 批准号:81070952
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
- 批准号:30672361
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Alkane transformations through binding to metals
通过与金属结合进行烷烃转化
- 批准号:
DP240103289 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Discovery Projects
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Fellowship
Conformations of musk odorants and their binding to human musk receptors
麝香气味剂的构象及其与人类麝香受体的结合
- 批准号:
EP/X039420/1 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Research Grant
Postdoctoral Fellowship: OPP-PRF: Understanding the Role of Specific Iron-binding Organic Ligands in Governing Iron Biogeochemistry in the Southern Ocean
博士后奖学金:OPP-PRF:了解特定铁结合有机配体在控制南大洋铁生物地球化学中的作用
- 批准号:
2317664 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of Real-time, Ultrasensitive Electrical Transduction of Biological Binding Events for Pathogen and Disease Detection
I-Corps:生物结合事件的实时、超灵敏电转导在病原体和疾病检测中的转化潜力
- 批准号:
2419915 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CRII: OAC: Development of a modular framework for the modeling of peptide and protein binding to membranes
CRII:OAC:开发用于模拟肽和蛋白质与膜结合的模块化框架
- 批准号:
2347997 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
How lipid binding proteins shape the activity of nuclear hormone receptors
脂质结合蛋白如何影响核激素受体的活性
- 批准号:
DP240103141 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Discovery Projects
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
- 批准号:
MR/Y013131/1 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Research Grant