Molecular mechanism of Ca2+-induced mitochondrial shape transition in metazoans
Ca2+诱导后生动物线粒体形态转变的分子机制
基本信息
- 批准号:10062506
- 负责人:
- 金额:$ 46.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-15 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:AnimalsAutophagocytosisBindingBiochemicalBioenergeticsCRISPR libraryCRISPR/Cas technologyCalciumCalcium OscillationsCell DeathCell SurvivalCell physiologyCellsCessation of lifeComplexCytosolDataDiseaseDissociationEF-Hand DomainElectron MicroscopyElementsEmbryoExcisionExhibitsFailureFutureGenesGlutamatesHarvestHepatocyteImaging TechniquesIn VitroInfarctionInvestigationIschemiaKinesinKnock-inKnock-outKnockout MiceLiverMediatingMembrane PotentialsMitochondriaMitochondrial DNAMitochondrial MatrixMitochondrial SwellingModelingMolecularMusMutationNecrosisNeurologicNeuronsOuter Mitochondrial MembraneOxidantsOxidation-ReductionOxidoreductasePermeabilityPhysiologyPlayPotential EnergyProteinsQuality ControlRegulationReperfusion InjuryReperfusion TherapyResistanceRiskRoleSecond Messenger SystemsShapesSignal TransductionStressStrokeTestingToxic effectTubulinbasecalcium uniportercell typecellular pathologydeep sequencingexperimental studygenome wide screengenome-wideindexingloss of functionmitochondrial dysfunctionmitochondrial permeability transition porenext generationpreservationpreventresponserho GTP-Binding Proteinssensorspatiotemporaltherapeutic developmenttherapeutic targettreatment strategyuptakewhole genome
项目摘要
PROJECT SUMMARY / ABSTRACT
Ca2+ is a critical second messenger that is required for several cellular processes. Cytosolic Ca2+ (cCa2+)
transients are shaped by the mitochondria due to the highly negative membrane potential and through the
mitochondrial calcium uniporter (MCU). Mitochondrial Ca2+ (mCa2+) is utilized by the matrix dehydrogenases for
maintaining cellular bioenergetics. Reciprocally, dysregulated elevation of cCa2+ under conditions of stroke,
ischemia/reperfusion injury drives mCa2+ overload that in turn leads to mitochondrial permeability transition pore
opening that triggers necrotic cell death. Hence, it was thought that preventing mCa2+ overload can be
protective under conditions of elevated cCa2+. Contrary to this, mice knocked-out for MCU, which demonstrated
no mCa2+ uptake and hence no mitochondrial swelling, surprisingly did not offer any protection from IR
mediated cell death, suggesting that loss of MCU-mediated Ca2+ overload was not sufficient to protect cells
from Ca2+-induced necrosis. To understand the molecular mechanisms of elevated Ca2+-induced cell death, we
performed ultra-structural analysis of liver harvested from liver specific MCU-/- (MCUHEP) and MCUfl/fl animals.
Electron microscopy studies revealed stark contrast in the shape of mitochondria: MCUfl/fl liver sections
showed long and filamentous mitochondria (spaghetti-like) while MCUHEP mitochondria were short and circular
(donut-like). We hypothesized this Mitochondrial Shape Transition phenomenon that we refer hereafter as
MiST, to be cCa2+-induced and independent of mitochondrial swelling or Drp1-mediated mitochondrial fission.
Based on our preliminary results, we hypothesize that pathophysiological elevation of cCa2+ induces MiST and
that is Miro-1 driven. Because cellular mitochondrial networks allow for the sharing of metabolites, proteins,
mitochondrial DNA and potential energy distribution, there is an extensive risk for local mitochondrial failures to
quickly spread over the entire network and compromise cellular energy conversion. Like power networks that
physically segment elements with circuit breakers, we hypothesize that MiST protects mitochondrial networks
from propagating local failures. Our recently completed whole genome-wide CRISPR/Cas9 Library screen in
MEFs identified a conserved protein, S100z to be the cytosolic component for MiST. We expect MiST to be a
sequential step with a major determinant to be the cCa2+ transients and the molecular component to be shared
by the cytosol (S100Z) and the mitochondria (Miro1). We also hypothesize that MiST is likely to be conserved
in metazoans and would facilitate lysosomal removal by autophagy/mitophagy depending on the varying cCa2+
transients, thus preserving the quality of the mitochondrial network. The revelation of this Ca2+-induced
phenomenon and the identification of the molecular components will resolve the spatio-temporal molecular
mechanisms of MiST. Successful accomplishment of our proposed experiments using our cellular,
biochemical, and imaging techniques will authentically demonstrate MiST to be key regulator in maintaining
mitochondrial quality control under pathophysiological conditions.
项目摘要/摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MADESH MUNISWAMY其他文献
MADESH MUNISWAMY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MADESH MUNISWAMY', 18)}}的其他基金
Magnesium flux compendium: Discover ligands, channels, and metabolic signals
镁通量概要:发现配体、通道和代谢信号
- 批准号:
10662656 - 财政年份:2022
- 资助金额:
$ 46.11万 - 项目类别:
Magnesium flux compendium: Discover ligands, channels, and metabolic signals
镁通量概要:发现配体、通道和代谢信号
- 批准号:
10791996 - 财政年份:2022
- 资助金额:
$ 46.11万 - 项目类别:
Magnesium flux compendium: Discover ligands, channels, and metabolic signals
镁通量概要:发现配体、通道和代谢信号
- 批准号:
10405276 - 财政年份:2022
- 资助金额:
$ 46.11万 - 项目类别:
Magnesium flux compendium: Discover ligands, channels, and metabolic signals
镁通量概要:发现配体、通道和代谢信号
- 批准号:
10627888 - 财政年份:2022
- 资助金额:
$ 46.11万 - 项目类别:
Essential Role for SPG7 in Mitochondrial Permeability Transition Pore Assembly and Function
SPG7 在线粒体渗透性转变孔组装和功能中的重要作用
- 批准号:
10241316 - 财政年份:2020
- 资助金额:
$ 46.11万 - 项目类别:
Inhibition of MCUR1-MCU mediated mitochondrial Ca2+ uptake prevents I/R injury
抑制 MCUR1-MCU 介导的线粒体 Ca2 摄取可预防 I/R 损伤
- 批准号:
8694610 - 财政年份:2014
- 资助金额:
$ 46.11万 - 项目类别:
Molecular mechanism of Ca2+-induced mitochondrial shape transition in metazoans
Ca2+诱导后生动物线粒体形态转变的分子机制
- 批准号:
10527556 - 财政年份:2014
- 资助金额:
$ 46.11万 - 项目类别:
Inhibition of MCUR1-MCU mediated mitochondrial Ca2+ uptake prevents I/R injury
抑制 MCUR1-MCU 介导的线粒体 Ca2 摄取可预防 I/R 损伤
- 批准号:
8824559 - 财政年份:2014
- 资助金额:
$ 46.11万 - 项目类别:
Inhibition of MCUR1-MCU mediated mitochondrial Ca2+ uptake prevents I/R injury
抑制 MCUR1-MCU 介导的线粒体 Ca2 摄取可预防 I/R 损伤
- 批准号:
9032520 - 财政年份:2014
- 资助金额:
$ 46.11万 - 项目类别:
Molecular mechanism of Ca2+-induced mitochondrial shape transition in metazoans
Ca2+诱导后生动物线粒体形态转变的分子机制
- 批准号:
10331786 - 财政年份:2014
- 资助金额:
$ 46.11万 - 项目类别:














{{item.name}}会员




