Cortical Synaptic Dynamics during Learning in the Aging Brain
衰老大脑学习过程中的皮质突触动力学
基本信息
- 批准号:9177545
- 负责人:
- 金额:$ 30.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-15 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccidentsAction PotentialsAdultAffectAgeAgingAreaAttentionBehavioralBrainCerebral cortexCountryDendritic SpinesDevelopmentElderlyElectrophysiology (science)EquilibriumExperimental ModelsFatal injuryForelimbFutureGoalsHumanImageInferiorInjuryInterneuronsKnowledgeLearningLifeMaintenanceMediatingMemoryMicroscopyModificationMotorMotor CortexMusNeocortexNeurodegenerative DisordersNeuronsOutputParvalbuminsPerformancePopulationQuality of lifeResearchSocial WelfareSomatosensory CortexSynapsesSynaptic plasticityTechniquesTestingTherapeuticTherapeutic InterventionTimeTrainingTransgenic MiceVibrissaeViral Vectorage relatedagedaging brainbrain celldensitydexterityexcitatory neuronexecutive functiongenetic approachhippocampal pyramidal neuronhuman subjectimprovedin vivoinnovationmemory recallmotor learningneuromechanismnormal agingoptogeneticspatch clamppreventsensory discriminationsomatosensorytherapy designtransmission processtwo-photon
项目摘要
PROJECT SUMMARY/ABSTRACT
The neural mechanisms that mediate the decline of brain performance with aging are poorly
defined and affect many aspects of normal aging life: reductions in motor dexterity, sensory
discrimination, executive function, and attention which impact the degree of independence,
number of injuries, and fatal accidents. We will define mechanisms of age-related changes in
synaptic plasticity and investigate their impact in memory and learning. Our hypothesis is that in
the aged cerebral cortex, disruption of the excitation/inhibition balance at the level of the
microcircuits of layer 5 (L5) pyramidal neurons leads to reduced formation of long-lasting stable
synapses between excitatory neurons, resulting in impaired learning. We have recently
described that dendritic spine density of aged mice is stable, but that their dynamics are
elevated in somatosensory cortex. But, we do not if density and dynamics of dendritic spines
are differentially affected by age in different brain areas. Also, the mechanisms underlying the
alteration in synaptic dynamics in the aging brain are unexplored. One possibility is that the
intracortical inhibition controlling synaptic plasticity in the adult brain is released with aging
allowing the formation of excess synaptic contacts, many of them meaningless and
subsequently be eliminated and making the handling and storing of information less effective.
Thus, increasing levels of intracortical inhibition in the aged brain may prevent alterations in
synaptic dynamics and preserve brain performance. We will test the following hypotheses: (a)
elevated dendritic spine dynamics in the aged brain impedes the creation of memory-forming
synaptic contacts and impairs the ability of cortical circuits to store/manage information; (b) age-
related reduction in inhibitory transmission at the level of the local circuitry of L5 pyramidal
neurons is responsible for the increased instability of dendritic spines; (c) restoring intracortical
inhibition in the primary motor cortex of aged mice will stabilize dendritic spines of L5 pyramidal
neurons and improve performance in a motor learning task. We will use transgenic mice for in
vivo 2PE microscopy and optogenetics in the conditional expression of viral vectors, behavioral
tasks, and electrophysiological recordings of synaptically connected neurons: Aim 1 will
determine that the alteration of synaptic dynamics in the aged brain is a maladaptive
mechanism impairing learning. Aim 2 will identify age-dependent changes in PV and
SOM neurons of the L5 cortical microcircuit responsible for instability of dendritic spines
in pyramidal neurons and impaired learning. Aim 3 will confirm that the age-related
decrease of inhibition in L5 pyramidal neurons impairs synaptic plasticity and learning.
By using state-of-the-art techniques and innovative experimental approaches will elucidate the
effects of normal aging on the assembly and maintenance of cortical circuits to facilitate future
development of therapeutic interventions designed to delay the onset of aging-related brain
decline and prolong the quality of life and welfare of the elderly. Results from the proposed
research may be applied and used for studies on other neurodegenerative disorders.
项目总结/摘要
调节大脑性能随年龄增长而下降的神经机制很差
定义并影响正常衰老生活的许多方面:运动灵活性,感觉
影响独立程度的辨别力、执行功能和注意力,
受伤人数和致命事故。我们将定义与年龄相关的变化机制,
突触可塑性,并研究其对记忆和学习的影响。我们的假设是
老化的大脑皮层,兴奋/抑制平衡的破坏,
第5层(L5)锥体神经元的微电路导致持久稳定的形成减少
兴奋性神经元之间的突触,导致学习受损。我们最近
描述了老年小鼠的树突棘密度是稳定的,但它们的动力学是
在躯体感觉皮层中升高。但是,如果树突棘的密度和动力学
在不同的大脑区域受到年龄的不同影响。此外,
老化大脑中突触动力学的改变尚未探索。一种可能是
控制成人大脑中突触可塑性的皮质内抑制随着年龄的增长而释放
允许形成过多的突触接触,其中许多是毫无意义的,
随后被消除,并使信息的处理和存储效率降低。
因此,增加老年大脑皮质内抑制水平可能会阻止大脑皮质内抑制的改变。
突触动力学和保持大脑性能。我们将测试以下假设:(a)
老年大脑中树突棘动力学的升高阻碍了记忆形成的创造,
突触接触并损害皮层回路存储/管理信息的能力;(B)年龄-
L5锥体神经节局部回路水平的抑制性传递相关减少
神经元负责增加树突棘的不稳定性;(c)恢复皮质内
抑制老年小鼠的初级运动皮层将稳定L5锥体的树突棘
神经元和提高性能的运动学习任务。我们将使用转基因小鼠
体内2 PE显微镜和光遗传学在病毒载体的条件表达、行为
任务和突触连接神经元的电生理记录:目标1将
确定老年大脑中突触动力学的改变是一种适应不良,
损害学习的机制。目标2将确定PV的年龄依赖性变化,
L5皮层微回路中负责树突棘不稳定性的SOM神经元
锥体神经元和学习障碍。目标3将确认与年龄有关的
L5锥体神经元中抑制的降低损害突触可塑性和学习。
通过使用最先进的技术和创新的实验方法将阐明
正常老化对大脑皮层回路组装和维持的影响,
开发旨在延迟与衰老相关的大脑发病的治疗干预措施
降低和延长老年人的生活质量和福利。拟议的结果
研究可应用于其他神经退行性疾病的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ricardo Mostany其他文献
Ricardo Mostany的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ricardo Mostany', 18)}}的其他基金
Impact of hypertension and high-fat diet on mechanisms by which estradiol affects cortical synaptic plasticity.
高血压和高脂肪饮食对雌二醇影响皮质突触可塑性机制的影响。
- 批准号:
10334233 - 财政年份:2022
- 资助金额:
$ 30.85万 - 项目类别:
Impact of hypertension and high-fat diet on mechanisms by which estradiol affects cortical synaptic plasticity.
高血压和高脂肪饮食对雌二醇影响皮质突触可塑性机制的影响。
- 批准号:
10579241 - 财政年份:2022
- 资助金额:
$ 30.85万 - 项目类别:
Dysfunctional homeostatic plasticity in Alzheimer's Disease
阿尔茨海默氏病的稳态可塑性功能失调
- 批准号:
10369096 - 财政年份:2021
- 资助金额:
$ 30.85万 - 项目类别:
Cortical Synaptic Dynamics during Learning in the Aging Brain
衰老大脑学习过程中的皮质突触动力学
- 批准号:
9924419 - 财政年份:2016
- 资助金额:
$ 30.85万 - 项目类别:
Cortical Synaptic Dynamics during Learning in the Aging Brain
衰老大脑学习过程中的皮质突触动力学
- 批准号:
9545894 - 财政年份:2016
- 资助金额:
$ 30.85万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 30.85万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 30.85万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 30.85万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 30.85万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 30.85万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 30.85万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 30.85万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 30.85万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 30.85万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 30.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)