Dysfunctional homeostatic plasticity in Alzheimer's Disease

阿尔茨海默氏病的稳态可塑性功能失调

基本信息

  • 批准号:
    10369096
  • 负责人:
  • 金额:
    $ 42.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-01 至 2023-04-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT Brain performance declines with Alzheimer’s disease (AD) progression. The massive loss of neurons observed at advances stages of the disease are confirmatory observations of the disruption of the brain circuits governing the brain tasks affected. This is, however, too late in the progression of the disease. Beta-amyloid (Aβ) progressively accumulates over many years, surpassing its physiological levels early in the disease. Unfortunately, little is known about the effects of Aβ before the first symptoms appear. By then, it has been reported, among other things, that there is an increase in the excitability of the neurons. We found that cortical pyramidal neurons of young APPNL-G-F mice, a relatively novel mouse model of AD that does not overexpress amyloid precursor protein, but accumulates Aβ aggressively after the second month of life, present with physiological features that indicate a reduction of their intrinsic excitability when compared with neurons from age-matched controls. The same indicators 3-4 months later, when the accumulation of Aβ is significant, show a swing in their excitability, and the neurons become more excitable than in control mice, results more in agreement with the data from the literature. We believe that sustained hypoexcitability results in impaired homeostatic mechanisms of intrinsic excitability in 6-month-old mice. Our hypothesis is that early accumulation of Aβ leads to hypoexcitability of cortical neurons resulting in a pathological hyperexcitability at later stages of the disease. This abnormal switch in excitability is a consequence of an impairment of the homeostatic mechanism caused by upregulation of CaMKIV activity. The questions that arise now are how early Aβ accumulation leads to hypoexcitability, what causes the rebound in excitability a few months later, and whether there is a manipulation that could correct the hypoexcitable state to prevent the hyperexcitable state. To answer these questions we will test the following hypotheses: (1) hypoexcitability in the young APPNL-G-F mice is caused by upregulation of voltage-gated potassium channels, downregulation of voltage-gated sodium channels changes, or both, (2) defective or saturated mechanisms of homeostatic plasticity lead to hypoexcitability at younger ages, (3) homeostatic plasticity dysregulation is a direct consequence of Aβ accumulation, (4) hypoexcitability occurring during young adulthood in the progression of pathology in the APPNL-G-F mouse model is a cause of hyperexcitability at later stages (middle age), (5) early hypoexcitability results in blunted homeostatic response at middle age, due to downregulation of CaMKIV, and (6) long-term block of K+ channels using FDA- approved drugs during early stages of the pathology will increase homeostatic downregulation of excitability. We will use APP knock-in (APPNL-G-F) transgenic mice, the most clinically relevant mouse model of AD, in vivo 2PE microscopy, optogenetics, chemogenetics, and electrophysiological recordings to test our hypotheses. Aim 1 will identify the mechanisms responsible for early, pre-plaque hypoexcitability of pyramidal neurons in APPNL-G-F mice and Aim 2 will determine if interventions aimed to correct early hypoexcitability of pyramidal neurons can prevent or decrease middle age hyperexcitability. By using state of the art techniques and innovative experimental and animal models, we will elucidate the effects of the progression of the AD pathology on neuronal homeostatic mechanisms. This study has the potential to generate novel knowledge on the deficits impacting brain function before the appearance of cognitive symptoms for the design and improvement of personalized or precision interventions aimed to prevent or delay cognitive disturbances in Alzheimer’s disease patients.
项目总结/摘要 脑功能随着阿尔茨海默病(AD)的进展而下降。观察到的大量神经元损失 在疾病的进展阶段,可以证实观察到大脑控制神经元的回路中断, 大脑的任务受到影响。然而,这在疾病的发展中为时已晚。β-淀粉样蛋白(Aβ) 多年来逐渐积累,超过疾病早期的生理水平。 不幸的是,在第一个症状出现之前,人们对Aβ的影响知之甚少。到那时, 报告说,除其他外,神经元的兴奋性增加了。我们发现大脑皮层 年轻的APPNL-G-F小鼠的锥体神经元,一种相对新颖的AD小鼠模型, 淀粉样前体蛋白,但在出生后第二个月后积极积累Aβ, 这些生理特征表明,与来自神经元的神经元相比, 年龄匹配的对照组。3-4个月后,当Aβ积累显著时,相同的指标显示 兴奋性的波动,神经元变得比对照组小鼠更兴奋, 与文献中的数据一致。我们认为持续的低兴奋性会导致 6月龄小鼠内在兴奋性的稳态机制。我们的假设是早期的积累 导致皮质神经元的低兴奋性,导致在晚期阶段的病理性过度兴奋。 这种疾病这种兴奋性的异常转换是体内平衡受损的结果。 CaMKIV活性上调引起的机制。现在出现的问题是Aβ 积累导致低兴奋性,是什么原因导致兴奋性在几个月后反弹,以及是否 存在一种可以纠正低兴奋状态以防止高兴奋状态的操作。回答 这些问题,我们将测试以下假设:(1)低兴奋性在年轻的APPNL-G-F小鼠引起的 通过上调电压门控钾通道、下调电压门控钠通道 变化,或两者兼而有之,(2)稳态可塑性的缺陷或饱和机制导致低兴奋性, 年龄较小,(3)稳态可塑性失调是Aβ蓄积的直接结果,(4) 在APPNL-G-F小鼠模型的病理学进展中,在青年期出现低兴奋性 是后期(中年)兴奋过度的原因,(5)早期兴奋性低下导致体内平衡减弱 由于CaMKIV的下调,以及(6)使用FDA-1长期阻断K+通道, 在病理学的早期阶段批准的药物将增加兴奋性的稳态下调。我们 将使用APP敲入(APPNL-G-F)转基因小鼠,临床上最相关的AD小鼠模型,体内2 PE 显微镜、光遗传学、化学遗传学和电生理记录来验证我们的假设。要求1 将确定机制负责早期,前斑块低兴奋性的锥体神经元在APPNL-G-F 小鼠和Aim 2将确定旨在纠正锥体神经元早期低兴奋性的干预措施是否可以 预防或减少中年过度兴奋。通过使用最先进的技术和创新 通过实验和动物模型,我们将阐明AD病理进展对神经元的影响 自我平衡机制这项研究有可能产生有关影响缺陷的新知识 在认知症状出现之前,为大脑功能设计和改善个性化或 精确干预旨在预防或延迟阿尔茨海默病患者的认知障碍。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ricardo Mostany其他文献

Ricardo Mostany的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ricardo Mostany', 18)}}的其他基金

Impact of hypertension and high-fat diet on mechanisms by which estradiol affects cortical synaptic plasticity.
高血压和高脂肪饮食对雌二醇影响皮质突触可塑性机制的影响。
  • 批准号:
    10334233
  • 财政年份:
    2022
  • 资助金额:
    $ 42.48万
  • 项目类别:
Impact of hypertension and high-fat diet on mechanisms by which estradiol affects cortical synaptic plasticity.
高血压和高脂肪饮食对雌二醇影响皮质突触可塑性机制的影响。
  • 批准号:
    10579241
  • 财政年份:
    2022
  • 资助金额:
    $ 42.48万
  • 项目类别:
Cortical Synaptic Dynamics during Learning in the Aging Brain
衰老大脑学习过程中的皮质突触动力学
  • 批准号:
    9924419
  • 财政年份:
    2016
  • 资助金额:
    $ 42.48万
  • 项目类别:
Cortical Synaptic Dynamics during Learning in the Aging Brain
衰老大脑学习过程中的皮质突触动力学
  • 批准号:
    9545894
  • 财政年份:
    2016
  • 资助金额:
    $ 42.48万
  • 项目类别:
Cortical Synaptic Dynamics during Learning in the Aging Brain
衰老大脑学习过程中的皮质突触动力学
  • 批准号:
    9177545
  • 财政年份:
    2016
  • 资助金额:
    $ 42.48万
  • 项目类别:

相似国自然基金

靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
  • 批准号:
    JCZRQN202500010
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
  • 批准号:
    2025JJ70209
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0 万元
  • 项目类别:
    面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
  • 批准号:
    2023JJ50274
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
  • 批准号:
    81973577
  • 批准年份:
    2019
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
  • 批准号:
    81602908
  • 批准年份:
    2016
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
  • 批准号:
    81501928
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The Phenomenon of Stem Cell Aging according to Methylation Estimates of Age After Hematopoietic Stem Cell Transplantation
根据造血干细胞移植后甲基化年龄估算干细胞衰老现象
  • 批准号:
    23K07844
  • 财政年份:
    2023
  • 资助金额:
    $ 42.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of Age-dependent Functional Changes in Skeletal Muscle CB1 Receptors by an in Vitro Model of Aging-related Muscle Atrophy
通过衰老相关性肌肉萎缩的体外模型分析骨骼肌 CB1 受体的年龄依赖性功能变化
  • 批准号:
    22KJ2960
  • 财政年份:
    2023
  • 资助金额:
    $ 42.48万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Joint U.S.-Japan Measures for Aging and Dementia Derived from the Prevention of Age-Related and Noise-induced Hearing Loss
美日针对预防与年龄相关和噪声引起的听力损失而导致的老龄化和痴呆症联合措施
  • 批准号:
    23KK0156
  • 财政年份:
    2023
  • 资助金额:
    $ 42.48万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
The Effects of Muscle Fatigability on Gait Instability in Aging and Age-Related Falls Risk
肌肉疲劳对衰老步态不稳定性和年龄相关跌倒风险的影响
  • 批准号:
    10677409
  • 财政年份:
    2023
  • 资助金额:
    $ 42.48万
  • 项目类别:
Characterizing gut physiology by age, frailty, and sex: assessing the role of the aging gut in "inflamm-aging"
按年龄、虚弱和性别表征肠道生理学特征:评估衰老肠道在“炎症衰老”中的作用
  • 批准号:
    497927
  • 财政年份:
    2023
  • 资助金额:
    $ 42.48万
  • 项目类别:
Role of AGE/RAGEsignaling as a driver of pathological aging in the brain
AGE/RAGE信号传导作为大脑病理性衰老驱动因素的作用
  • 批准号:
    10836835
  • 财政年份:
    2023
  • 资助金额:
    $ 42.48万
  • 项目类别:
Deciphering the role of osteopontin in the aging eye and age-related macular degeneration
破译骨桥蛋白在眼睛老化和年龄相关性黄斑变性中的作用
  • 批准号:
    10679287
  • 财政年份:
    2023
  • 资助金额:
    $ 42.48万
  • 项目类别:
Targeting Age-Activated Proinflammatory Chemokine Signaling by CCL2/11 to Enhance Skeletal Muscle Regeneration in Aging
通过 CCL2/11 靶向年龄激活的促炎趋化因子信号传导以增强衰老过程中的骨骼肌再生
  • 批准号:
    478877
  • 财政年份:
    2023
  • 资助金额:
    $ 42.48万
  • 项目类别:
    Operating Grants
Elucidation of the protein kinase NLK-mediated aging mechanisms and treatment of age-related diseases
阐明蛋白激酶NLK介导的衰老机制及年龄相关疾病的治疗
  • 批准号:
    23K06378
  • 财政年份:
    2023
  • 资助金额:
    $ 42.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Underlying mechanisms of age-related changes in ingestive behaviors: From the perspective of the aging brain and deterioration of the gustatory system.
与年龄相关的摄入行为变化的潜在机制:从大脑老化和味觉系统退化的角度来看。
  • 批准号:
    23K10845
  • 财政年份:
    2023
  • 资助金额:
    $ 42.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了