G-quadruplex DNA as a chemical signaling agent
G-四链体 DNA 作为化学信号剂
基本信息
- 批准号:9010374
- 负责人:
- 金额:$ 29.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-21 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAgingAppearanceAreaBindingBinding ProteinsBiochemicalBiologicalBiological AssayBiological ProcessBiologyCancer EtiologyCell NucleusCellsCellular StressChemicalsCytoplasmCytoplasmic GranulesCytoplasmic StructuresCytosolDNADNA DamageDNA SequenceDataDevelopmentDiagnosticDiseaseEnvironmentG-QuartetsGene ExpressionGenetic TranscriptionGenetic TranslationGenomeGenomic DNAGuanineHumanHuman GenomeHydrogen BondingKnowledgeLeadLinkLocationMalignant NeoplasmsMessenger RNAMetabolismMethodologyMitochondriaMitochondrial DNAMolecularNatural ImmunityNeurodegenerative DisordersNuclearOligonucleotidesOxidative StressPlayPrevalenceProtein BindingProteinsProteomicsProto-OncogenesRNARNA HelicaseReactive Oxygen SpeciesRegulationReporterReportingResearchResistanceRoleSignal TransductionSignaling MoleculeSiteStressStructureTestingTherapeuticTranscriptTranslationsWorkbasebiological adaptation to stresscancer therapyin vitro activitynucleasepreventpromoterpublic health relevancequadruplex DNArepairedresponsesensorsmall moleculetelomeretranscriptome sequencing
项目摘要
DESCRIPTION (provided by applicant): Quadruplex DNA, or G4DNA, is made of four guanines that form Hoogsteen hydrogen bonds in a planar ring which is referred to as a G quartet. Multiple stacks of these G quartets (or tetrads) associate to form highly stable structures. Recently, several methodologies have provided convincing evidence confirming that G4DNA in cells affects DNA metabolism including transcription and replication. Recent work has provided a direct link between formation of G4DNA and G4RNA sequences and some neurodegenerative diseases such as ALS. Intense efforts are underway to develop agents that bind to G4DNA sequences for treatment of various cancers. G4DNA sequences are found throughout the genome, but are localized preferentially to certain regions such as promoters of proto-oncogenes, telomeres, and mitochondrial DNA. Despite the intense research focused on G4DNA, the mechanism(s) through which these structures impart biological function are largely unknown. We have applied a proteomic screen to discover new proteins that bind to G4DNA. The major proteins identified, including DHX36, are known to assemble into cytoplasmic structures termed stress granules under conditions of cellular stress. The location of these proteins and their known roles in regulation of translation leads us to a new hypothesis for the function of G4DNA. We propose that endogenous G4DNA excised from damaged mitochondrial and nuclear genomes can enter the cytosol intact. This excised G4DNA binds to proteins involved in translation to initiate a "stress response" through formation of stress granules. Our hypothesis provides a new mechanism by which cells can respond to the effects of DNA damage during oxidative stress. Hence, excised G4DNA can serve as a chemical signaling agent, alerting the cell to DNA damage. To test this hypothesis, we will determine the quantity and identity of G4DNA in the cytoplasm as a function of oxidative cell stress (Aim 1). In Aim 2, we will determine if G4DNA modulates the translation regulatory activity of DHX36 and if G4DNA and DHX36 co-localize with stress granule proteins. Aim 3 will focus on the consequences of different types of G4DNA on the enzymatic activity of DHX36 to test possible mechanisms by which G4DNA affects the protein. Different G4DNA structures will be evaluated in a biological screen that reports on translation. This work will have a direct impact on our understanding of the mechanisms of small molecules that are targeted to G4DNA and have been proposed as therapies for cancer treatment. Multiple research areas of relevance to cancer etiology will be impacted by this research including DNA damage response, mitochondrial and telomere biology, innate immunity, translation regulation, and cell signaling.
描述(由申请人提供):四链体DNA或G4DNA由四个鸟嘌呤组成,它们在称为G四链体的平面环中形成Hoogsteen氢键。这些G四联体(或四联体)的多个堆叠结合形成高度稳定的结构。近年来,一些研究方法提供了令人信服的证据,证实细胞中的G4DNA影响DNA代谢,包括转录和复制。最近的工作提供了G4DNA和G4RNA序列的形成与一些神经退行性疾病如ALS之间的直接联系。目前正在努力开发与G4DNA序列结合的药物,用于治疗各种癌症。G4DNA序列存在于整个基因组中,但优先定位于某些区域,如原癌基因、端粒和线粒体DNA的启动子。尽管人们对G4 DNA进行了深入的研究,但这些结构赋予生物学功能的机制在很大程度上尚不清楚。我们已经应用蛋白质组学筛选来发现与G4DNA结合的新蛋白质。已知鉴定的主要蛋白质,包括DHX36,在细胞应激条件下组装成称为应激颗粒的细胞质结构。这些蛋白质的位置及其在翻译调控中的已知作用使我们对G4DNA的功能提出了一个新的假设。我们建议,从受损的线粒体和核基因组中切除的内源性G4DNA可以完整地进入细胞质。这种被切除的G4DNA与参与翻译的蛋白质结合,通过形成应激颗粒来启动“应激反应”。我们的假设提供了一种新的机制,细胞可以响应氧化应激过程中的DNA损伤的影响。因此,切除的G4DNA可以作为一种化学信号剂,提醒细胞DNA损伤。为了验证这一假设,我们将确定细胞质中G4 DNA的数量和身份作为氧化细胞应激的函数(目的1)。在目标2中,我们将确定G4DNA是否调节DHX36的翻译调节活性,以及G4DNA和DHX36是否与应激颗粒蛋白共定位。目的3将集中于不同类型的G4DNA对DHX36酶活性的影响,以测试G4DNA影响蛋白质的可能机制。不同的G4DNA结构将在报告翻译的生物筛选中进行评估。这项工作将直接影响我们对靶向G4DNA的小分子机制的理解,并已被提议作为癌症治疗的疗法。与癌症病因学相关的多个研究领域将受到这项研究的影响,包括DNA损伤反应,线粒体和端粒生物学,先天免疫,翻译调节和细胞信号传导。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin Douglas Raney其他文献
Kevin Douglas Raney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin Douglas Raney', 18)}}的其他基金
Functions and Mechanisms of Helicases and G-Quadruplex Nucleic Acids
解旋酶和 G-四链体核酸的功能和机制
- 批准号:
9277158 - 财政年份:2017
- 资助金额:
$ 29.43万 - 项目类别:
Functions and Mechanisms of Helicases and G-Quadruplex Nucleic Acids
解旋酶和 G-四链体核酸的功能和机制
- 批准号:
9892786 - 财政年份:2017
- 资助金额:
$ 29.43万 - 项目类别:
Functions and Mechanisms of Helicases and G-Quadruplex Nucleic Acids
解旋酶和 G-四链体核酸的功能和机制
- 批准号:
9912771 - 财政年份:2017
- 资助金额:
$ 29.43万 - 项目类别:
HCV NS3 and NS5A: Biochemical Mechanisms and Biological Functions
HCV NS3 和 NS5A:生化机制和生物学功能
- 批准号:
7842164 - 财政年份:2009
- 资助金额:
$ 29.43万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 29.43万 - 项目类别:
Parkinson's disease and aging affect neural activation during continuous gait alterations to the split-belt treadmill: An [18F] FDG PET Study.
帕金森病和衰老会影响分体带跑步机连续步态改变期间的神经激活:[18F] FDG PET 研究。
- 批准号:
400097 - 财政年份:2019
- 资助金额:
$ 29.43万 - 项目类别:
The elucidation of the mechanism by which intestinal epithelial cells affect impaired glucose tolerance during aging
阐明衰老过程中肠上皮细胞影响糖耐量受损的机制
- 批准号:
19K09017 - 财政年份:2019
- 资助金额:
$ 29.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Does aging of osteocytes adversely affect bone metabolism?
骨细胞老化会对骨代谢产生不利影响吗?
- 批准号:
18K09531 - 财政年份:2018
- 资助金额:
$ 29.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Links between affect, executive function, and prefrontal structure in aging: A longitudinal analysis
衰老过程中情感、执行功能和前额叶结构之间的联系:纵向分析
- 批准号:
9766994 - 财政年份:2018
- 资助金额:
$ 29.43万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 29.43万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 29.43万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 29.43万 - 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
- 批准号:
9925164 - 财政年份:2016
- 资助金额:
$ 29.43万 - 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
- 批准号:
9345997 - 财政年份:2016
- 资助金额:
$ 29.43万 - 项目类别: