Functions and Mechanisms of Helicases and G-Quadruplex Nucleic Acids
解旋酶和 G-四链体核酸的功能和机制
基本信息
- 批准号:9912771
- 负责人:
- 金额:$ 52.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:ATP HydrolysisAffectBinding ProteinsBiochemicalBiological ProcessCRISPR/Cas technologyCellsCellular StressCytoplasmCytoplasmic StructuresDNADNA DamageDNA RepairDNA SequenceDNA StructureDNA metabolismDataEnzymesEukaryotaFamilyG-QuartetsGTP-Binding Protein alpha Subunits, GsGene ExpressionGenetic RecombinationGenetic TranscriptionGenomeGenome StabilityGoalsGuanineHeart DiseasesHydrogen BondingInnate Immune ResponseLocationMalignant NeoplasmsMethodsMitochondriaMitochondrial DNAMolecular MotorsMultiprotein ComplexesMutationNuclearNucleic AcidsPhasePlayPost-Translational Protein ProcessingProteinsProteomicsProto-OncogenesRNARNA HelicaseReactionRegulationResearchRiskRoleSignal PathwaySignal TransductionSiteStructureTestingTranslationshelicasehistone modificationhuman diseaseimproved outcomemalignant breast neoplasmnervous system disordernucleic acid metabolismpromoterquadruplex DNArecombinaserepairedresponsestress granuletelomere
项目摘要
Project Summary
Helicases are molecular motor proteins that use energy from hydrolysis of ATP to manipulate DNA and RNA in
all phases of nucleic acid metabolism. Numerous mutations have been identified in many different helicases
that are associated with human diseases including cancer, heart disease, and neurological disorders. The
primary function of helicases is to unwind duplex DNA, but other critical functions have been discovered for
which biochemical mechanisms are unknown. Helicases displace proteins from DNA and unfold secondary
structures in DNA such as G-quadruplex DNA (G4DNA) in reactions that are critical for maintaining genomic
stability. G4DNA is made of four guanines that form Hoogsteen hydrogen bonds in a planar ring which is
referred to as a G quartet. Multiple stacks of these G quartets associate to form highly stable structures.
G4DNA affects DNA metabolism including transcription, recombination, and replication. The Pif1 family of
helicases has been identified in all eukaryotes and has been identified as playing a key role in recognition and
unfolding of G4DNA structures. Mutation in Pif1 can increase the risk for some forms of breast cancer. The
overall goals of this project are to determine the mechanism(s) by which Pif1 and other helicases push proteins
from DNA and unfold critical DNA structures such as G4DNA. We will determine how helicases are affected
by proteins with which they interact such as single-stranded binding proteins and recombinases.
G4DNA sequences are found throughout the genome, but are localized preferentially to certain regions
such as promoters of proto-oncogenes, telomeres, and mitochondrial DNA. The mechanism(s) through which
these structures impart biological function are largely unknown. We have devised a method to examine the
epiproteome at practically any site in the genome by using a CRISPR-Cas9 targeting strategy. We will identify
the proteins and histone modifications that surround G4DNA sites in order to understand how these sequences
influence gene expression, recombination, and other activities. We have applied a proteomic screen to
discover new proteins that bind to G4DNA. The major proteins identified, including the RNA helicase DHX36,
are known to assemble into cytoplasmic structures termed stress granules under conditions of cellular stress.
The location of these proteins and their known roles in regulation of translation led us to test a hypothesis for
one function of G4DNA. Our data supports the conclusion that G4DNA is excised from damaged mitochondrial
and nuclear genomes and can enter the cytoplasm intact where it facilitates formation of stress granules. Our
goals now are to determine the specific sequences of G4DNA removed from the genome, the mechanism by
which the G4DNA is excised, and the specific functions by which excised G4DNA affects translation. The
long-term goal is to understand how signaling by G4DNA overlaps and intersects with other signaling pathways
such as the DNA damage response and innate immune response.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin Douglas Raney其他文献
Kevin Douglas Raney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin Douglas Raney', 18)}}的其他基金
Functions and Mechanisms of Helicases and G-Quadruplex Nucleic Acids
解旋酶和 G-四链体核酸的功能和机制
- 批准号:
9277158 - 财政年份:2017
- 资助金额:
$ 52.97万 - 项目类别:
Functions and Mechanisms of Helicases and G-Quadruplex Nucleic Acids
解旋酶和 G-四链体核酸的功能和机制
- 批准号:
9892786 - 财政年份:2017
- 资助金额:
$ 52.97万 - 项目类别:
G-quadruplex DNA as a chemical signaling agent
G-四链体 DNA 作为化学信号剂
- 批准号:
9010374 - 财政年份:2015
- 资助金额:
$ 52.97万 - 项目类别:
HCV NS3 and NS5A: Biochemical Mechanisms and Biological Functions
HCV NS3 和 NS5A:生化机制和生物学功能
- 批准号:
7842164 - 财政年份:2009
- 资助金额:
$ 52.97万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 52.97万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 52.97万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 52.97万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 52.97万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 52.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 52.97万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 52.97万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 52.97万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 52.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 52.97万 - 项目类别:
Studentship














{{item.name}}会员




