One Stop Shop Imaging for Acute Ischemic StrokeTreatment

急性缺血性中风治疗的一站式成像

基本信息

  • 批准号:
    9150568
  • 负责人:
  • 金额:
    $ 72.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-30 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Stroke is one of the leading causes of death and disability in the United States. Each year more than 795,000 people in the U.S. have a stroke; over 100,000 will die and a majority of the others will suffer varying degrees of neurological injury. An NIH estimate indicated that the cost of caring for people with strokes exceeded $73 billion in U.S. healthcare dollars each year. While many advances have been made in the care of people with strokes (e.g. preventative measures and rehabilitation), once a stroke has occurred, the ability to effectively prevent or limit neurological injury remains elusive. Only a small fraction of people having an acute stroke are suitable candidates for endovascular therapy; estimates place this number between 58,000 and 120,000 per year. Critical factors which impact both the likelihood of successful revascularization and, more importantly, the chances of a good clinical outcome are: 1) the time from onset of a stroke to revascularization and 2) the ability to distinguish patients who have a small volume of irreversibly injured brain (ischemic core) and a large volume of ischemic but salvageable brain (penumbra) from ones where there is a large ischemic core and very little or no penumbra. It is on these two factors that we believe the application of the proposed techniques will have a quantum impact. Our overarching objective is to develop a new imaging workflow using available C-arm cone-beam CT data acquisition systems that are currently widely available in angiography suites worldwide. We believe that this new clinical paradigm will enable selected patients with an acute ischemic stroke (AIS) to be diagnosed, triaged, and treated using a single modality, thus greatly reducing delay in the time from stroke onset to treatment. The proposed imaging scheme provides imaging data that will enhance the ability to select those patients most likely to benefit from revascularization and eliminate ones for whom revascularization may be futile or potentially harmful. This new workflow is enabled by a revolutionary image reconstruction technique, namely the Synchronized Multi-Artifact Reduction with Tomographic RECONstruction (SMART-RECON) technique, invented by the PI of the project. This new reconstruction method fundamentally challenges the traditional conditions for image reconstruction written in textbooks and other recent literature: Its application enables the reconstruction of time-resolved CT images using data acquired from a series of angular segments taken over an angular span of about 60 degrees rather than the conventional standard of 180 degrees plus the fan angle. This new technique enables a quantum leap in C-arm based cone beam CT imaging, allowing one to acquire and reconstruct high temporal resolution images at ultra low radiation dose levels. These SMART- RECON processed images may then be used to generate non-contrast CT images to exclude the presence of hemorrhage, time-resolved cone beam CT angiography to evaluate the site of occlusion and collaterals, and CT perfusion parametric images to assess the extent of ischemic core and penumbra, thereby fulfilling the imaging requirements for one-stop-shop imaging in an angiography suite. Adding further value is the ability to obtain these images with such low levels of radiation exposure that multiple assessments during an intervention become feasible. Therefore, in this proposal, the theme is to use this innovation in technology to take a quantum leap forward in clinical practice. To fully optimize and validate the proposed imaging workflow for acute ischemic stroke diagnosis and treatment, three aims are planned using both an animal model and human subject studies. The purpose of Aim #1 is to develop and optimize the SMART-RECON technique to enable One-Stop-Shop imaging; Aim #2 is to validate One-Stop-Shop workflow in animal studies; and Aim #3 is to validate One-Stop-Shop imaging in a two-phase human subject studies. Upon the completion of the proposed aims and the associated quantifiable milestones, a new neurovascular imaging platform should have been developed and tested in clinical environment. It will provide image guidance for diagnosis, patient selection, treatment planning, treatment delivery, and treatment efficacy assessment in patients presenting with an AIS. It is impossible to overstate the degree to which "Time is Brain" in patients with an AIS. Thus, a workflow which can save time compared to current techniques enabled by the proposed revolutionary imaging technology should allow for a quantum leap in diagnosis and treatment for patients suffering from an acute ischemic stroke.


项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guang-Hong Chen其他文献

Guang-Hong Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guang-Hong Chen', 18)}}的其他基金

Next Generation Cone Beam CT with Improved Contrast Resolution and Added Spectral Imaging Functionality
下一代锥束 CT 具有改进的对比度分辨率并增加了光谱成像功能
  • 批准号:
    10660754
  • 财政年份:
    2023
  • 资助金额:
    $ 72.88万
  • 项目类别:
Clinical Translation of a One-Stop-Shop Imaging Method for Abdominal CT
腹部 CT 一站式成像方法的临床转化
  • 批准号:
    10522078
  • 财政年份:
    2022
  • 资助金额:
    $ 72.88万
  • 项目类别:
Clinical Translation of a One-Stop-Shop Imaging Method for Abdominal CT
腹部 CT 一站式成像方法的临床转化
  • 批准号:
    10686103
  • 财政年份:
    2022
  • 资助金额:
    $ 72.88万
  • 项目类别:
Functional Lung Imaging Using a Single kV CT Acquisition
使用单 kV CT 采集进行功能性肺部成像
  • 批准号:
    10436306
  • 财政年份:
    2021
  • 资助金额:
    $ 72.88万
  • 项目类别:
Functional Lung Imaging Using a Single kV CT Acquisition
使用单 kV CT 采集进行功能性肺部成像
  • 批准号:
    10212057
  • 财政年份:
    2021
  • 资助金额:
    $ 72.88万
  • 项目类别:
Functional Lung Imaging Using a Single kV CT Acquisition
使用单 kV CT 采集进行功能性肺部成像
  • 批准号:
    10667565
  • 财政年份:
    2021
  • 资助金额:
    $ 72.88万
  • 项目类别:
Multi-Contrast Chest Radiography (MC-CXR) for COVID-19 Diagnosis and Screening
用于 COVID-19 诊断和筛查的多重对比胸部 X 光检查 (MC-CXR)
  • 批准号:
    10160566
  • 财政年份:
    2020
  • 资助金额:
    $ 72.88万
  • 项目类别:
Multi-Contrast X-ray Breast Imaging
多对比 X 射线乳腺成像
  • 批准号:
    9197646
  • 财政年份:
    2016
  • 资助金额:
    $ 72.88万
  • 项目类别:
Multi-Contrast X-ray Breast Imaging
多对比 X 射线乳腺成像
  • 批准号:
    9029087
  • 财政年份:
    2016
  • 资助金额:
    $ 72.88万
  • 项目类别:
One Stop Shop Imaging for Acute Ischemic StrokeTreatment
急性缺血性中风治疗的一站式成像
  • 批准号:
    8998333
  • 财政年份:
    2015
  • 资助金额:
    $ 72.88万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 72.88万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 72.88万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 72.88万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 72.88万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 72.88万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 72.88万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 72.88万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 72.88万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 72.88万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 72.88万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了