Pattern Analysis of fMRI via machine learning/sparse models: application to brain development
通过机器学习/稀疏模型进行功能磁共振成像的模式分析:在大脑发育中的应用
基本信息
- 批准号:9155330
- 负责人:
- 金额:$ 49.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdolescentAgeAlgorithmsAnatomyBiologicalBiological MarkersBrainBrain regionClassificationClinical DataCommunitiesDataDevelopmentDiagnosisDictionaryFunctional ImagingFunctional Magnetic Resonance ImagingGoalsHeterogeneityImageIndividualLinkMachine LearningMeasurementMeasuresMethodologyMethodsModelingNeurosciencesOutcomePathologicPathway AnalysisPatternPattern RecognitionPhiladelphiaPopulationPsychotic DisordersResourcesRestRiskSamplingShapesSubgroupSymptomsTechniquesTestingWorkYouthabstractingbasebrain abnormalitiesclinical biomarkerscognitive functioncohortconnectomefollow-uphuman dataimprovedindexinginterestlearning strategyneuroimagingneuropsychiatric disordernovelsignal processingtooltrend
项目摘要
Abstract
Resting state fMRI (rsfMRI) provides reproducible, task-independent biomarkers of coherent
functional activity linking different brain regions. The main goal of the proposed project is to leverage
advances in signal processing and machine learning methods to derive clinically useful biomarkers
based on patterns of functional connectivity, and to test these biomarkers in a large study of brain
development. Central to our methodology are 1) computing a subject-specific functional parcellation
of the brain, which defines nodes for characterizing individualized functional brain networks; 2)
extracting sparse connectivity patterns for robustly representing brain networks; 3) capturing
heterogeneity in brain networks across individuals in a given population; and 4) deriving individualized
predictive indices of psychosis risk from brain connectivity in a large study of brain development. This
novel suite of functional connectivity analysis tools will be developed and validated based on data
from the Human Connectome Project and the Philadelphia Neurodevelopmental Cohort (PNC).
Finally, these techniques will be applied to PNC data in order to delineate heterogeneity in network
development in youth with psychosis-spectrum symptoms. Our hypothesis is that patterns of
functional connectivity in adolescents with psychosis-spectrum symptoms will be different from those
in typically developing adolescents, and this difference will display a high degree of heterogeneity that
is linked to underlying heterogeneity in pathologic neurodevelopmental trajectories. Moreover, we
expect that machine learning techniques will allow us to predict on an individual basis which
adolescents with psychosis-spectrum symptoms will remain stable, which will revert to normal, and
which will progress to psychosis, based on their baseline functional connectivity signatures. Our
methods are generally applicable to rsfMRI studies for detecting and quantifying spatio-temporal
functional connectivity patterns in diverse fields, including diagnosing brain abnormalities in
neuropsychiatric diseases, and finding associations of functional connectivity with different cognitive
functions. All methods will be made publicly available and form an important new resource for the
broader neuroscience community.
摘要
静息状态功能磁共振成像(rsfMRI)提供了可重复的,任务无关的生物标志物,
连接不同脑区的功能活动拟议项目的主要目标是利用
信号处理和机器学习方法的进展,以获得临床有用的生物标志物
基于功能连接的模式,并在一项大型的大脑研究中测试这些生物标志物。
发展我们的方法的核心是1)计算特定于主题的功能划分
定义了用于表征个体化功能性大脑网络的节点; 2)
提取用于鲁棒地表示大脑网络的稀疏连接模式; 3)捕获
给定人群中个体之间的大脑网络的异质性;以及4)导出个体化的
在一项大型大脑发育研究中,大脑连接性的精神病风险预测指标。这
将根据数据开发和验证一套新的功能连通性分析工具
来自人类连接组项目和费城神经发育队列(PNC)。
最后,将这些技术应用于PNC数据,以描述网络中的异质性
精神病谱系症状的青年的发展。我们的假设是
有精神病谱系症状的青少年的功能连接将不同于那些
在典型发育中的青少年中,这种差异将显示出高度的异质性,
与病理性神经发育轨迹的潜在异质性有关。而且我们
预计机器学习技术将允许我们在个人基础上预测,
有精神病症状的青少年将保持稳定,恢复正常,
根据他们的基线功能连接特征,他们会发展成精神病。我们
方法通常适用于rsfMRI研究,用于检测和量化时空
不同领域的功能连接模式,包括诊断大脑异常,
神经精神疾病,并发现功能连接与不同的认知
功能协调发展的所有的方法都将公开提供,并成为世界卫生组织的一个重要的新资源。
更广泛的神经科学社区。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christos Davatzikos其他文献
Christos Davatzikos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christos Davatzikos', 18)}}的其他基金
Disentangling the anatomical, functional and clinical heterogeneity of major depression, using machine learning methods
使用机器学习方法解开重度抑郁症的解剖学、功能和临床异质性
- 批准号:
10714834 - 财政年份:2023
- 资助金额:
$ 49.1万 - 项目类别:
Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
- 批准号:
10625442 - 财政年份:2022
- 资助金额:
$ 49.1万 - 项目类别:
Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
- 批准号:
10421222 - 财政年份:2022
- 资助金额:
$ 49.1万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10696100 - 财政年份:2020
- 资助金额:
$ 49.1万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10263220 - 财政年份:2020
- 资助金额:
$ 49.1万 - 项目类别:
Benchmarking and Comparing AD-Related AI Methods Across Sites on a Standardized Dataset
在标准化数据集上跨站点对 AD 相关 AI 方法进行基准测试和比较
- 批准号:
10825403 - 财政年份:2020
- 资助金额:
$ 49.1万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10475286 - 财政年份:2020
- 资助金额:
$ 49.1万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10028746 - 财政年份:2020
- 资助金额:
$ 49.1万 - 项目类别:
Machine Learning and Large-scale Imaging analytics for dimensional representations of brain trajectories in aging and preclinical Alzheimer's Disease: The brain aging chart and the iSTAGING consortium
机器学习和大规模成像分析,用于衰老和临床前阿尔茨海默氏病大脑轨迹的维度表示:大脑衰老图表和 iSTAGING 联盟
- 批准号:
10839623 - 财政年份:2017
- 资助金额:
$ 49.1万 - 项目类别:
相似海外基金
Developmental trajectories of brain rhythm dynamics in healthy adolescent rats: oscillatory network reconfigurations at the vulnerable age of schizophrenia prodrome
健康青少年大鼠脑节律动态的发育轨迹:精神分裂症前驱症状脆弱年龄的振荡网络重构
- 批准号:
10646175 - 财政年份:2022
- 资助金额:
$ 49.1万 - 项目类别:
Developmental trajectories of brain rhythm dynamics in healthy adolescent rats: oscillatory network reconfigurations at the vulnerable age of schizophrenia prodrome
健康青少年大鼠脑节律动态的发育轨迹:精神分裂症前驱症状脆弱年龄的振荡网络重构
- 批准号:
10373688 - 财政年份:2022
- 资助金额:
$ 49.1万 - 项目类别:
Quantifying Real-world Effectiveness of Mental Health Interventions for Suicide Prevention in At-risk Adolescent and Transitional Age Youth
量化高危青少年和过渡时期青年心理健康干预措施预防自杀的现实有效性
- 批准号:
10610840 - 财政年份:2021
- 资助金额:
$ 49.1万 - 项目类别:
Quantifying Real-world Effectiveness of Mental Health Interventions for Suicide Prevention in At-risk Adolescent and Transitional Age Youth
量化高危青少年和过渡时期青年心理健康干预措施预防自杀的现实有效性
- 批准号:
10205663 - 财政年份:2021
- 资助金额:
$ 49.1万 - 项目类别:
Quantifying Real-world Effectiveness of Mental Health Interventions for Suicide Prevention in At-risk Adolescent and Transitional Age Youth
量化高危青少年和过渡时期青年心理健康干预措施预防自杀的现实有效性
- 批准号:
10394352 - 财政年份:2021
- 资助金额:
$ 49.1万 - 项目类别:
A Centre of Research Excellence in Adolescent Health: Making health services work for adolescents in a digital age
青少年健康卓越研究中心:让健康服务为数字时代的青少年服务
- 批准号:
nhmrc : GNT1134894 - 财政年份:2017
- 资助金额:
$ 49.1万 - 项目类别:
Centres of Research Excellence
A Centre of Research Excellence in Adolescent Health: Making health services work for adolescents in a digital age
青少年健康卓越研究中心:让健康服务为数字时代的青少年服务
- 批准号:
nhmrc : 1134894 - 财政年份:2017
- 资助金额:
$ 49.1万 - 项目类别:
Centres of Research Excellence
Effects of delaying age of onset of binge drinking on adolescent brain development: A proposal to add neuroimaing measures to the CO-Venture Trial.
延迟酗酒的发病年龄对青少年大脑发育的影响:在 CO-Venture 试验中添加神经影像测量的建议。
- 批准号:
267251 - 财政年份:2012
- 资助金额:
$ 49.1万 - 项目类别:
Operating Grants
Partner Age Discordance and HIV Risk Behaviors in Adolescent Girls (Sexual RP)
青春期女孩的伴侣年龄不一致和艾滋病毒风险行为(性 RP)
- 批准号:
7556355 - 财政年份:2007
- 资助金额:
$ 49.1万 - 项目类别:
Partner Age Discordance and HIV Risk Behaviors in Adolescent Girls (Sexual RP)
青春期女孩的伴侣年龄不一致和艾滋病毒风险行为(性 RP)
- 批准号:
7714365 - 财政年份:2007
- 资助金额:
$ 49.1万 - 项目类别: