3D Quantitative Fluorescent Speckle Microscopy
3D 定量荧光散斑显微镜
基本信息
- 批准号:9175860
- 负责人:
- 金额:$ 40.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-01-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsActomyosinAdoptedAdoptionAffectAutomobile DrivingBenchmarkingBiochemicalBiologicalCell AdhesionCell Culture TechniquesCell Surface ReceptorsCell modelCell physiologyCell-Matrix JunctionCellsCellular StructuresCellular biologyClathrinCollaborationsColorCommunitiesComputersComputing MethodologiesCoupledCytoskeletonData SetDedicationsDevelopmentDimensionsEngineeringEnvironmentEpithelial CellsExcisionEyeFluorescence MicroscopyFluorescent ProbesFocal AdhesionsFundingGene ExpressionGenerationsGeometryGlassGoalsGrantImageImageryImaging TechniquesImaging technologyIn VitroIndividualLabelLifeLightMacromolecular ComplexesMapsMeasuresMechanicsMeiosisMemoryMethodsMicroscopyMicrotubulesMitoticModelingMolecularMolecular StructureMonitorMorphogenesisMotionNatureNetwork-basedOpticsOrganellesPatternPhysiologicalPlus End of the MicrotubulePolymersPopulationPositioning AttributePost-Translational Protein ProcessingPreparationProcessProgress ReportsRegulationResearchResearch InfrastructureResolutionSalmonSamplingSignal TransductionSlideStructureSubcellular structureSurfaceTechniquesTechnologyTestingTextureThree-Dimensional ImageTimeTissue ModelTissuesTrainingVisualWorkbasecell cortexcell motilitycoated pitcomputerized toolsdesignextracellularflexibilityimaging modalityinterestlight microscopymacromolecular assemblymicroscopic imagingmigrationmolecular assembly/self assemblymolecular dynamicsmovienanometernoveloperationparticlepreventquantitative imagingreconstitutionresearch studysingle moleculetechnological innovationtissue culturetooltwo-dimensional
项目摘要
ABSTRACT
Fluorescent Speckle Microscopy (FSM) is an imaging mode to visualize and quantify the
dynamics of macromolecular assemblies in living cells. It relies on vastly substoichiometric
labeling of one or several components of the assembly of interest. When imaged by diffraction
limited optics this labeling generates a random punctate texture that encodes in a statistical
fashion transport, mechanical deformation, and molecular turnover of the assembly. As such,
FSM is related to the super-resolution techniques STORM and PALM, which both rely also on
random sampling of the molecular constituents of macromolecular assemblies. In STORM and
PALM substochiometry in labeling is achieved by passive or active switching of a small set of
fluorescent probes between a dark and a bright state. In contrast, in the original implementation
FSM has relied on a population of permanently labeled subunits that dynamically incorporate in
the assembly. In STORM and PALM, substochiometric labeling is exploited to sequentially
collect the coordinates of individual subunits with nanometer precision, i.e. to acquire over time
a super-resolution map of the molecular organization of an assembly. In FSM, substochiometric
labeling is exploited to track in real-time subunit motion, addition and removal. Accordingly, the
spatial resolution of FSM is still diffraction-limited; however, FSM offers information about the
dynamics of a macromolecular assembly no other imaging modality provides. FSM has seen
widespread applications in the research of cytoskeleton dynamics. Under the auspices of the
present grant, my lab has developed the computational approaches required to make FSM a
quantitative imaging technique (qFSM). In collaboration with several experimental groups as
well as by developing FSM imaging capabilities in my own lab we have used qFSM technology
to study the dynamics of the actin and microtubule cytoskeletons and associated molecular
structures in cell morphogenesis, migration and division; and extended the method to the
analysis of transient assembly of cell surface receptors in cellular signaling. Due to its rigid
requirements for diffraction-limited imaging qFSM has been restricted, however, to live imaging
of cells cultured on glass slides, which is entirely unphysiological. Capitalizing on the recent
revolution in light-sheet imaging we propose here to take qFSM to the third dimension in order
to apply its power for unveiling cytoskeleton dynamics in organotypic models of cells and
tissues. This endeavor will require an iterative optimization of i) the design and implementation
of multispectral light-sheet microscopy; ii) the flexible and simultaneous, substoichiometric
labeling of multiple macromolecular assemblies, iii) the development of computational tools for
tracking and interpretation of speckle dynamics in 3D time-lapse volumes. Specifically, in Aim 1,
we will focus on molecular aggregates tracking microtubule plus ends and on clathrin-coated
pits to develop fast 3D image acquisition and highly-sensitive 3D particle tracking methods with
the goal of measuring the lifetime of macromolecular assemblies. In Aim 2, we will focus on the
dynamics of the actomyosin cell cortex during cell polarization to develop robust dual-color
speckle generation and optical-flow based computational methods with the goal of
spatiotemporally mapping rates of molecular turnover and contraction in the cell cortical
network. In Aim 3, we will focus on interactions between actomyosin cell cortex, components of
cell adhesions, and the collagenous 3D microenvironment of cells to develop simultaneous 4-
color image acquisition of speckle patterns and the computational tools for quantification and
visualization of the coupled dynamics of macromolecular assemblies with the goal of testing the
null hypothesis of a molecular clutch between cortical network and cell matrix adhesions in 3D.
All tools will be engineered with an eye towards generalization, so that our technological
innovations can be rapidly deployed to the community for the study of other dynamic cell
structures.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gaudenz Danuser其他文献
Gaudenz Danuser的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gaudenz Danuser', 18)}}的其他基金
UTSW-UNC Center for Cell Signaling Analysis
UTSW-UNC 细胞信号分析中心
- 批准号:
10412148 - 财政年份:2022
- 资助金额:
$ 40.5万 - 项目类别:
UTSW-UNC Center for Cell Signaling Analysis
UTSW-UNC 细胞信号分析中心
- 批准号:
10705616 - 财政年份:2022
- 资助金额:
$ 40.5万 - 项目类别:
Integrated visualization, control, and analysis of GEF – GTPase networks in living cells
活细胞中 GEF – GTPase 网络的集成可视化、控制和分析
- 批准号:
10221568 - 财政年份:2021
- 资助金额:
$ 40.5万 - 项目类别:
Integrated visualization, control, and analysis of GEF – GTPase networks in living cells
活细胞中 GEF – GTPase 网络的集成可视化、控制和分析
- 批准号:
10379219 - 财政年份:2021
- 资助金额:
$ 40.5万 - 项目类别:
Imaging mechanisms of metastatic tumor formation in situ
原位转移性肿瘤形成的成像机制
- 批准号:
10374648 - 财政年份:2021
- 资助金额:
$ 40.5万 - 项目类别:
Integrated visualization, control, and analysis of GEF – GTPase networks in living cells
活细胞中 GEF – GTPase 网络的集成可视化、控制和分析
- 批准号:
10612345 - 财政年份:2021
- 资助金额:
$ 40.5万 - 项目类别:
Imaging mechanisms of metastatic tumor formation in situ
原位转移性肿瘤形成的成像机制
- 批准号:
10684857 - 财政年份:2021
- 资助金额:
$ 40.5万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
- 批准号:
MR/Y001125/1 - 财政年份:2024
- 资助金额:
$ 40.5万 - 项目类别:
Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
- 批准号:
2337141 - 财政年份:2024
- 资助金额:
$ 40.5万 - 项目类别:
Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
- 批准号:
2340865 - 财政年份:2024
- 资助金额:
$ 40.5万 - 项目类别:
Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
- 批准号:
23K14186 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
- 批准号:
573067-2022 - 财政年份:2022
- 资助金额:
$ 40.5万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
- 批准号:
2144380 - 财政年份:2022
- 资助金额:
$ 40.5万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201236 - 财政年份:2022
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201235 - 财政年份:2022
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
- 批准号:
463633 - 财政年份:2022
- 资助金额:
$ 40.5万 - 项目类别:
Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
- 批准号:
546047-2020 - 财政年份:2021
- 资助金额:
$ 40.5万 - 项目类别:
Postdoctoral Fellowships














{{item.name}}会员




