3D Quantitative Fluorescent Speckle Microscopy

3D 定量荧光散斑显微镜

基本信息

  • 批准号:
    9175860
  • 负责人:
  • 金额:
    $ 40.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-01-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT Fluorescent Speckle Microscopy (FSM) is an imaging mode to visualize and quantify the dynamics of macromolecular assemblies in living cells. It relies on vastly substoichiometric labeling of one or several components of the assembly of interest. When imaged by diffraction limited optics this labeling generates a random punctate texture that encodes in a statistical fashion transport, mechanical deformation, and molecular turnover of the assembly. As such, FSM is related to the super-resolution techniques STORM and PALM, which both rely also on random sampling of the molecular constituents of macromolecular assemblies. In STORM and PALM substochiometry in labeling is achieved by passive or active switching of a small set of fluorescent probes between a dark and a bright state. In contrast, in the original implementation FSM has relied on a population of permanently labeled subunits that dynamically incorporate in the assembly. In STORM and PALM, substochiometric labeling is exploited to sequentially collect the coordinates of individual subunits with nanometer precision, i.e. to acquire over time a super-resolution map of the molecular organization of an assembly. In FSM, substochiometric labeling is exploited to track in real-time subunit motion, addition and removal. Accordingly, the spatial resolution of FSM is still diffraction-limited; however, FSM offers information about the dynamics of a macromolecular assembly no other imaging modality provides. FSM has seen widespread applications in the research of cytoskeleton dynamics. Under the auspices of the present grant, my lab has developed the computational approaches required to make FSM a quantitative imaging technique (qFSM). In collaboration with several experimental groups as well as by developing FSM imaging capabilities in my own lab we have used qFSM technology to study the dynamics of the actin and microtubule cytoskeletons and associated molecular structures in cell morphogenesis, migration and division; and extended the method to the analysis of transient assembly of cell surface receptors in cellular signaling. Due to its rigid requirements for diffraction-limited imaging qFSM has been restricted, however, to live imaging of cells cultured on glass slides, which is entirely unphysiological. Capitalizing on the recent revolution in light-sheet imaging we propose here to take qFSM to the third dimension in order to apply its power for unveiling cytoskeleton dynamics in organotypic models of cells and tissues. This endeavor will require an iterative optimization of i) the design and implementation of multispectral light-sheet microscopy; ii) the flexible and simultaneous, substoichiometric labeling of multiple macromolecular assemblies, iii) the development of computational tools for tracking and interpretation of speckle dynamics in 3D time-lapse volumes. Specifically, in Aim 1, we will focus on molecular aggregates tracking microtubule plus ends and on clathrin-coated pits to develop fast 3D image acquisition and highly-sensitive 3D particle tracking methods with the goal of measuring the lifetime of macromolecular assemblies. In Aim 2, we will focus on the dynamics of the actomyosin cell cortex during cell polarization to develop robust dual-color speckle generation and optical-flow based computational methods with the goal of spatiotemporally mapping rates of molecular turnover and contraction in the cell cortical network. In Aim 3, we will focus on interactions between actomyosin cell cortex, components of cell adhesions, and the collagenous 3D microenvironment of cells to develop simultaneous 4- color image acquisition of speckle patterns and the computational tools for quantification and visualization of the coupled dynamics of macromolecular assemblies with the goal of testing the null hypothesis of a molecular clutch between cortical network and cell matrix adhesions in 3D. All tools will be engineered with an eye towards generalization, so that our technological innovations can be rapidly deployed to the community for the study of other dynamic cell structures.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gaudenz Danuser其他文献

Gaudenz Danuser的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gaudenz Danuser', 18)}}的其他基金

UTSW-UNC Center for Cell Signaling Analysis
UTSW-UNC 细胞信号分析中心
  • 批准号:
    10412148
  • 财政年份:
    2022
  • 资助金额:
    $ 40.5万
  • 项目类别:
UTSW-UNC Center for Cell Signaling Analysis
UTSW-UNC 细胞信号分析中心
  • 批准号:
    10705616
  • 财政年份:
    2022
  • 资助金额:
    $ 40.5万
  • 项目类别:
Administration and Coordination Core
行政及协调核心
  • 批准号:
    10374649
  • 财政年份:
    2021
  • 资助金额:
    $ 40.5万
  • 项目类别:
Integrated visualization, control, and analysis of GEF – GTPase networks in living cells
活细胞中 GEF – GTPase 网络的集成可视化、控制和分析
  • 批准号:
    10221568
  • 财政年份:
    2021
  • 资助金额:
    $ 40.5万
  • 项目类别:
Integrated visualization, control, and analysis of GEF – GTPase networks in living cells
活细胞中 GEF – GTPase 网络的集成可视化、控制和分析
  • 批准号:
    10379219
  • 财政年份:
    2021
  • 资助金额:
    $ 40.5万
  • 项目类别:
Imaging mechanisms of metastatic tumor formation in situ
原位转移性肿瘤形成的成像机制
  • 批准号:
    10374648
  • 财政年份:
    2021
  • 资助金额:
    $ 40.5万
  • 项目类别:
Administration and Coordination Core
行政及协调核心
  • 批准号:
    10684858
  • 财政年份:
    2021
  • 资助金额:
    $ 40.5万
  • 项目类别:
Integrated visualization, control, and analysis of GEF – GTPase networks in living cells
活细胞中 GEF – GTPase 网络的集成可视化、控制和分析
  • 批准号:
    10612345
  • 财政年份:
    2021
  • 资助金额:
    $ 40.5万
  • 项目类别:
Imaging mechanisms of metastatic tumor formation in situ
原位转移性肿瘤形成的成像机制
  • 批准号:
    10684857
  • 财政年份:
    2021
  • 资助金额:
    $ 40.5万
  • 项目类别:
Administration and Coordination Core
行政及协调核心
  • 批准号:
    10491346
  • 财政年份:
    2021
  • 资助金额:
    $ 40.5万
  • 项目类别:

相似国自然基金

由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
  • 批准号:
    82360313
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
  • 批准号:
    MR/Y001125/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
  • 批准号:
    2337141
  • 财政年份:
    2024
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
  • 批准号:
    2340865
  • 财政年份:
    2024
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
  • 批准号:
    23K14186
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
  • 批准号:
    573067-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 40.5万
  • 项目类别:
    University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
  • 批准号:
    2144380
  • 财政年份:
    2022
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
  • 批准号:
    2201236
  • 财政年份:
    2022
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
  • 批准号:
    2201235
  • 财政年份:
    2022
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
  • 批准号:
    463633
  • 财政年份:
    2022
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
  • 批准号:
    546047-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了