Defining Neuronal Circuits and Cellular Processes Underlying Resting fMRI Signals

定义静息 fMRI 信号下的神经元回路和细胞过程

基本信息

项目摘要

Intrinsic ‘functional connectivity’ (iFC), a measure of correlation between spontaneous fluctuations in the blood oxygen level dependent (BOLD) signal, reliably distinguish networks of cortical and subcortical areas during both rest and active task performance. iFC methods can map the functional architecture of the human brain in both healthy and pathological conditions, in high detail using as little as 5 minutes of data. Striking reproducibility and test-retest reliability of findings across centers have fueled a widespread application of iFC measures in clinical neuroscience, biomarker discovery, and human connectomics. However, the neural circuits and cellular processes underlying BOLD-iFC remain poorly specified. BOLD amplitude itself appears related to neural activity in the high gamma (HG) range (~70-200 Hz), and thus to an extent, with neuronal firing. However, BOLD’s relationship to the lower frequencies is controversial. This is a critical disconnect, as oscillatory activities below 40Hz reflect ongoing cell-circuit excitability fluctuations that control neuronal firing; i.e., the amplitude of neural population firing is “coupled” to oscillatory phase. In this, the simplest form of such phase-amplitude coupling (PAC), amplitude variations in higher frequency activity (e.g., firing or HG) are coupled to the phase of a lower frequency (e.g., theta). PAC operates both pairwise and recursively over the spectrum, from the range of neuronal firing down to the slow/infraslow (<1Hz) range where BOLD amplitude fluctuations are observed using resting state fMRI (R-fMRI). Thus PAC may provide a key to connecting resting BOLD fluctuations to activity cycles in the underlying cell circuits. In our framework: 1) At a microscopic, cortical cell-circuit level, a complex of excitatory and inhibitory interactions between neurons generate rhythmic excitability fluctuations (oscillations). 2) PAC organizes slow (0.5-12) Hz and mid-range (13-40Hz) oscillations hierarchically, ultimately controlling temporal patterns of neuronal firing. 3) Infraslow (0.01-0.1 Hz) neural activity fluctuations synchronize to form the macroscale intrinsic connectivity networks (ICN) indexed by R- fMRI, and use PAC to orchestrate faster activity within a network. Our broad goal is to use integrated human and monkey studies to investigate the relationship between macroscale BOLD-derived iFC patterns, and their underlying mechanisms at the microscale cell-circuit level. We will study the sensorimotor network, as its “nodal” organization and other properties are well understood, and it shows good human-simian correspondence. Focusing on key nodes in this network (e.g., face and hand areas), we will recapitulate prior work tying R-FMRI iFC to macroscale scalp EEG and mesoscale stereotactic (S)-EEG, and will use innovative laminar multielectrode methods to establish novel links to the cell circuit level. Established modeling and computational methods will help to construct a comprehensive model that connects macroscale iFC to underlying microscale, cell circuit activity.
内在功能连接性(IFC),一种衡量血液中自发波动之间的相关性的指标 氧水平依赖(BOLD)信号,可靠地区分皮层和皮质下区域的网络 休息和积极的任务表现。IFC方法可以绘制出人脑的功能结构图 健康和病理情况,使用短短5分钟的数据进行高细节分析。引人注目 各中心调查结果的重复性和重测可靠性推动了国际金融公司的广泛应用 在临床神经科学、生物标记物发现和人类连接学方面的措施。然而,神经 BOLD-IFC背后的电路和细胞过程仍然没有得到很好的说明。显示粗体幅度本身 与高伽马(HG)范围(~70-200赫兹)的神经活动有关,因此在一定程度上与神经元有关 开火。然而,博尔德与较低频率的关系存在争议。这是一个严重的脱节,因为 40赫兹以下的振荡活动反映了控制神经元放电的持续细胞电路兴奋性波动; 也就是说,神经群体放电的幅度与振荡相位“耦合”。在这种情况下,这种最简单的形式 相位-幅度耦合(PAC)、高频活动(例如,放电或HG)中的幅度变化 耦合到较低频率(例如,θ)的相位。PAC以成对和递归方式在 频谱,从神经元放电范围向下到慢/次流(&lt;1赫兹)范围,其中粗大幅度 使用静息功能磁共振成像(R-fMRI)观察波动。因此,PAC可以提供连接休眠的钥匙 基础细胞电路中活动周期的剧烈波动。在我们的框架中:1)在微观上, 皮层细胞电路水平,神经元之间兴奋性和抑制性相互作用的复合体,产生节律性 兴奋性波动(振荡)。2)PAC组织慢(0.5-12)赫兹和中频(13-40赫兹)振荡 分级地,最终控制神经元放电的时间模式。3)红外线(0.01-0.1赫兹)神经 活动波动同步形成R-索引的宏观内在连通性网络(ICN) FMRI,并使用PAC在网络中协调更快的活动。我们的宏伟目标是用完整的人类 和猴子研究,以调查宏观粗体衍生的IFC模式与其 微尺度电池-电路层面的潜在机制。我们将研究感觉运动网络,因为它的 “节点”组织和其他属性被很好地理解,并显示出良好的人猿 通信。聚焦于该网络中的关键节点(例如,面部和手部区域),我们将重述之前 将R-fMRI IFC与宏观头皮脑电和中尺度立体定向(S)-脑电捆绑在一起,并将使用创新的 层流多电极方法建立到电池电路级的新链接。已建立建模和 计算方法将有助于构建一个全面的模型,将宏观国际金融公司与 潜在的微尺度,细胞电路活动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Peter Milham其他文献

Clinical decision support systems in child and adolescent psychiatry: a systematic review
儿童和青少年精神病学中的临床决策支持系统:系统评价
  • DOI:
    10.1007/s00787-017-0992-0
  • 发表时间:
    2017-04-28
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Roman Koposov;Sturla Fossum;Thomas Frodl;Øystein Nytrø;Bennett Leventhal;Andre Sourander;Silvana Quaglini;Massimo Molteni;María de la Iglesia Vayá;Hans-Ulrich Prokosch;Nicola Barbarini;Michael Peter Milham;Francisco Xavier Castellanos;Norbert Skokauskas
  • 通讯作者:
    Norbert Skokauskas

Michael Peter Milham的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Peter Milham', 18)}}的其他基金

Reproducible imaging-based brain growth charts for psychiatry
用于精神病学的可重复的基于成像的大脑生长图
  • 批准号:
    9810689
  • 财政年份:
    2019
  • 资助金额:
    $ 96.21万
  • 项目类别:
Reproducible imaging-based brain growth charts for psychiatry
用于精神病学的可重复的基于成像的大脑生长图
  • 批准号:
    10001025
  • 财政年份:
    2019
  • 资助金额:
    $ 96.21万
  • 项目类别:
Reproducible imaging-based brain growth charts for psychiatry
用于精神病学的可重复的基于成像的大脑生长图
  • 批准号:
    10626901
  • 财政年份:
    2019
  • 资助金额:
    $ 96.21万
  • 项目类别:
Reproducible imaging-based brain growth charts for psychiatry
用于精神病学的可重复的基于成像的大脑生长图
  • 批准号:
    10430126
  • 财政年份:
    2019
  • 资助金额:
    $ 96.21万
  • 项目类别:
Reproducible imaging-based brain growth charts for psychiatry
用于精神病学的可重复的基于成像的大脑生长图
  • 批准号:
    10175049
  • 财政年份:
    2019
  • 资助金额:
    $ 96.21万
  • 项目类别:
Neurobiology and Cognitive Role of Slow Brain Network Fluctuations
神经生物学和慢脑网络波动的认知作用
  • 批准号:
    10639542
  • 财政年份:
    2017
  • 资助金额:
    $ 96.21万
  • 项目类别:
Macroscale physiology and functional correlates of slow network fluctuations
缓慢网络波动的宏观生理学和功能相关性
  • 批准号:
    10639544
  • 财政年份:
    2017
  • 资助金额:
    $ 96.21万
  • 项目类别:
Neuroimaging Core
神经影像核心
  • 批准号:
    10175039
  • 财政年份:
    2017
  • 资助金额:
    $ 96.21万
  • 项目类别:
Longitudinal Discovery of Brain Developmental Trajectories
大脑发育轨迹的纵向发现
  • 批准号:
    9303454
  • 财政年份:
    2013
  • 资助金额:
    $ 96.21万
  • 项目类别:
Longitudinal Discovery of Brain Developmental Trajectories
大脑发育轨迹的纵向发现
  • 批准号:
    9085391
  • 财政年份:
    2013
  • 资助金额:
    $ 96.21万
  • 项目类别:

相似海外基金

Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
  • 批准号:
    EP/Z000882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 96.21万
  • 项目类别:
    Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
  • 批准号:
    BB/Y513908/1
  • 财政年份:
    2024
  • 资助金额:
    $ 96.21万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
  • 批准号:
    2235348
  • 财政年份:
    2023
  • 资助金额:
    $ 96.21万
  • 项目类别:
    Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
  • 批准号:
    23K11917
  • 财政年份:
    2023
  • 资助金额:
    $ 96.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
  • 批准号:
    BB/X013227/1
  • 财政年份:
    2023
  • 资助金额:
    $ 96.21万
  • 项目类别:
    Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
  • 批准号:
    2825967
  • 财政年份:
    2023
  • 资助金额:
    $ 96.21万
  • 项目类别:
    Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
  • 批准号:
    10555809
  • 财政年份:
    2023
  • 资助金额:
    $ 96.21万
  • 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
  • 批准号:
    10761060
  • 财政年份:
    2023
  • 资助金额:
    $ 96.21万
  • 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
  • 批准号:
    10751126
  • 财政年份:
    2023
  • 资助金额:
    $ 96.21万
  • 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
  • 批准号:
    2872725
  • 财政年份:
    2023
  • 资助金额:
    $ 96.21万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了