Macroscale physiology and functional correlates of slow network fluctuations
缓慢网络波动的宏观生理学和功能相关性
基本信息
- 批准号:10639544
- 负责人:
- 金额:$ 34.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-15 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:Adaptive BehaviorsAddressAdultAffectArchivesAreaArousalAttentionBackBehaviorBehavioralBrainCognitionCognitiveCoupledDataData SetDimensionsDouble-Blind MethodElectrocardiogramElectroencephalographyEventFeedbackFunctional Magnetic Resonance ImagingFutureGoalsHeartHumanImpairmentInvestigationLearningLinkMapsMeasuresMemoryMindModalityNeurobiologyParticipantPatternPerformancePharmaceutical PreparationsPhasePhysiologicalPhysiologyPlacebosProbabilityPropertyReaction TimeRecurrenceRegulationRespirationRestRitalinRoleSamplingSignal TransductionSpecific qualifier valueStimulusStructureTask PerformancesTestingTimeVariantbehavioral responsebiophysical modelcognitive benefitscognitive controldata formatdata standardsdesigndirected attentionexperienceexperimental studyfunctional magnetic resonance imaging/electroencephalographyindexingmemory consolidationmemory encodingmemory retentionmoviemultimodalitynervous system disordernetwork modelsneuralvisual tracking
项目摘要
ABSTRACT. Slow fluctuations in behavioral, cognitive, and neural states are an omnipresent feature of the
brain across species and are aberrant in multiple disorders of the nervous system. Slow brain network
fluctuations critically organize behavior across extended timescales: as drifts in arousal over minutes, as well
as our ability to switch between attending externally versus turning internally to plan our future actions and
dwell on recent experiences. Although the contribution of slow brain network fluctuations to behavior have
typically been studied by linking one network measure to one behavior, this project seeks to more broadly
understand slow fluctuations in healthy human participants by i) deeply characterizing their relationship across
multiple measures of brain activity, physiology, behavior, and cognition measured simultaneously and ii)
causally manipulating key factors of cognitive control and arousal which are hypothesized to orchestrate
relationships between slow network fluctuations and ongoing behavior or switching between modes of
externally versus internally oriented attention. To achieve these goals, Aim 1 will perform a deep
characterization of slow network fluctuations by collecting extensive multimodal neural and physiological
recordings in healthy human participants. Simultaneous fMRI, EEG, electrodermal activity, pupillometry,
respiration, ECG, and EMG will be recorded as participants perform an extended array of tasks ranging from
unstructured (rest) to highly structured attention-demanding tasks. Experience sampling will allow us to assess
the contents of ongoing cognition. This rich dataset will allow us to, in an unprecedented manner, measure and
link slow fluctuations across multiple modalities, map their relationship with behavior on externally-oriented
tasks and to the contents of internal cognition. While Aim 1 will examine the relevance of slow fluctuations to
performance on stimulus- driven tasks, our ability to direct attention internally likely has adaptive benefits, a
feature not typically captured in externally-oriented lab-based tasks. Aim 2a will fill in this gap by directly
assessing the contributions of slow brain network fluctuations to supporting internal processing that benefits
our subsequent behavior. Specifically we will measure brain patterns associated with learning and goal
planning tasks, and assess neural and behavioral markers of continued internal processing on these tasks
during a subsequent time period. This will allow us to directly link slow network fluctuations to benefits
associated with internally-oriented cognition, and measure trade-offs between internally- versus externally-
oriented modes of cognition. Another major question relates to regulation of slow network fluctuations. Aim 2b
will assess the potential causal contributions of two key factors, cognitive control and arousal, to slow
fluctuations and their resulting impact on behavior and cognition. These factors will be independently
manipulated via task demands and double-blind drug administration to assess their distinct contributions.
These experiments will dramatically advance our understanding of the role of slow brain network fluctuations in
orchestrating adaptive behavior and cognition.
摘要。行为、认知和神经状态的缓慢波动是神经系统的一个无所不在的特征。
大脑跨物种,并在神经系统的多种疾病异常。慢脑网络
波动在延长的时间尺度上严格地组织行为:就像唤醒在几分钟内漂移一样,
因为我们能够在外部参与和内部参与之间切换,以计划我们未来的行动,
详述最近的经历。尽管大脑网络的缓慢波动对行为的影响
通常通过将一个网络测量与一种行为联系起来进行研究,该项目旨在更广泛地
理解健康人类参与者的缓慢波动,i)深入描述他们之间的关系,
同时测量大脑活动、生理、行为和认知的多种测量,以及ii)
因果地操纵认知控制和唤醒的关键因素,假设这些因素是为了协调
缓慢的网络波动和持续的行为之间的关系或模式之间的切换
外部和内部导向的注意力。为了实现这些目标,Aim 1将进行深入的
通过收集广泛的多模态神经和生理特征来表征缓慢的网络波动
记录在健康的人类参与者。同步功能磁共振成像脑电图皮肤电活动瞳孔测量
呼吸,心电图和肌电图将被记录为参与者执行一系列扩展的任务,
非结构化(休息)到高度结构化的注意力要求任务。经验取样将使我们能够评估
持续认知的内容。这个丰富的数据集将使我们能够以前所未有的方式,测量和
将多种模式之间的缓慢波动联系起来,将它们与外部导向的行为之间的关系映射出来,
任务和内部认知的内容。虽然目标1将审查缓慢波动与
在刺激驱动的任务中,我们将注意力集中在内部的能力可能具有适应性益处,
在基于外部的实验室任务中通常不会捕获的功能。目标2a将填补这一空白,
评估缓慢的大脑网络波动对支持内部处理的贡献,
我们后来的行为。具体来说,我们将测量与学习和目标相关的大脑模式
计划任务,并评估这些任务的持续内部处理的神经和行为标记
在随后的时间段内。这将使我们能够直接将缓慢的网络波动与收益联系起来
与内部导向的认知相关,并衡量内部与外部之间的权衡,
认知模式导向。另一个主要问题涉及对缓慢网络波动的监管。目标2b
将评估两个关键因素的潜在因果关系,认知控制和唤醒,以减缓
波动及其对行为和认知的影响。这些因素将独立
通过任务要求和双盲药物管理来评估其独特的贡献。
这些实验将极大地推进我们对大脑网络缓慢波动在大脑活动中的作用的理解。
协调适应性行为和认知。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Peter Milham其他文献
Clinical decision support systems in child and adolescent psychiatry: a systematic review
儿童和青少年精神病学中的临床决策支持系统:系统评价
- DOI:
10.1007/s00787-017-0992-0 - 发表时间:
2017-04-28 - 期刊:
- 影响因子:4.900
- 作者:
Roman Koposov;Sturla Fossum;Thomas Frodl;Øystein Nytrø;Bennett Leventhal;Andre Sourander;Silvana Quaglini;Massimo Molteni;María de la Iglesia Vayá;Hans-Ulrich Prokosch;Nicola Barbarini;Michael Peter Milham;Francisco Xavier Castellanos;Norbert Skokauskas - 通讯作者:
Norbert Skokauskas
Michael Peter Milham的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Peter Milham', 18)}}的其他基金
Reproducible imaging-based brain growth charts for psychiatry
用于精神病学的可重复的基于成像的大脑生长图
- 批准号:
9810689 - 财政年份:2019
- 资助金额:
$ 34.31万 - 项目类别:
Reproducible imaging-based brain growth charts for psychiatry
用于精神病学的可重复的基于成像的大脑生长图
- 批准号:
10001025 - 财政年份:2019
- 资助金额:
$ 34.31万 - 项目类别:
Reproducible imaging-based brain growth charts for psychiatry
用于精神病学的可重复的基于成像的大脑生长图
- 批准号:
10626901 - 财政年份:2019
- 资助金额:
$ 34.31万 - 项目类别:
Reproducible imaging-based brain growth charts for psychiatry
用于精神病学的可重复的基于成像的大脑生长图
- 批准号:
10430126 - 财政年份:2019
- 资助金额:
$ 34.31万 - 项目类别:
Reproducible imaging-based brain growth charts for psychiatry
用于精神病学的可重复的基于成像的大脑生长图
- 批准号:
10175049 - 财政年份:2019
- 资助金额:
$ 34.31万 - 项目类别:
Neurobiology and Cognitive Role of Slow Brain Network Fluctuations
神经生物学和慢脑网络波动的认知作用
- 批准号:
10639542 - 财政年份:2017
- 资助金额:
$ 34.31万 - 项目类别:
Defining Neuronal Circuits and Cellular Processes Underlying Resting fMRI Signals
定义静息 fMRI 信号下的神经元回路和细胞过程
- 批准号:
9206010 - 财政年份:2016
- 资助金额:
$ 34.31万 - 项目类别:
Longitudinal Discovery of Brain Developmental Trajectories
大脑发育轨迹的纵向发现
- 批准号:
9303454 - 财政年份:2013
- 资助金额:
$ 34.31万 - 项目类别:
Longitudinal Discovery of Brain Developmental Trajectories
大脑发育轨迹的纵向发现
- 批准号:
9085391 - 财政年份:2013
- 资助金额:
$ 34.31万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 34.31万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 34.31万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 34.31万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 34.31万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 34.31万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 34.31万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 34.31万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 34.31万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 34.31万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 34.31万 - 项目类别:
Research Grant