Training a new generation of computational neuroscientists bridging neurobiology and cognition

培训连接神经生物学和认知的新一代计算神经科学家

基本信息

  • 批准号:
    9246915
  • 负责人:
  • 金额:
    $ 14.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-15 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

PROGRAM SUMMARY The Training Program in Computational Neuroscience (TPCN) will support integrated undergraduate and graduate training in computational neuroscience at New York University. The program will be hosted by the Center for Neural Science (CNS), with participation of faculty in the Departments of Psychology, Mathematics, and Computer Science, and the Institute of Neuroscience at the School of Medicine. The TPCN will fit well with NYU's unique strengths and recent developments: (1) NYU is one of a few universities with a critical mass of computational neuroscientists. NYU has had a Sloan-Swartz Center for Theoretical Neuroscience since 1994. In the past three years alone, NYU has hired three computational neuroscientists. (2) CNS established an undergraduate major in neuroscience as early as 1992, and thus has a long track record in undergraduate education, it now has 136 students in the current academic year. (3) Recent faculty hiring in CNS, Psychology, and the School of Medicine has greatly expanded our teaching and research capabilities in the neuroscience of cognitive functions and their impairments associated with mental disorders. (3) As NYU is undertaking a merge of two historically separated neuroscience graduate programs (at CNS and the School of Medicine), this training grant will ensure that computational modeling, which has become indispensible in neuroscience, will be front-and-center in the integrated graduate program. (4) NYU is a major center of Artificial Intelligence and Data Science, with close links to Facebook's AI Center and the Simons Center for Data Analysis. Our training faculty together with these connections will give our students ample opportunities to acquire machine learning techniques for data analysis and learn about brain-like AI algorithms. The proposed training program will support coherent undergraduate and graduate training in computational neuroscience at NYU. It will have several unique features: (1) Innovative mentorship methods: For example, (a) graduate trainees will mentor undergraduate trainees, (b) faculty will explicitly discuss human factors in academic practice; (c) there will be post-mortems after seminars by outside speakers. (2) Computational psychiatry: We propose new courses and research opportunities that are designed specifically to link cognitive function and the neurobiology of neural circuits. We propose innovative education in the nascent field of Computational Psychiatry, to bring theory and circuit modeling to clinical research in mental health. (3) Broad preparation: We aim to prepare trainees for jobs not only in academia, but also in medical and industry research. To achieve this, we will utilize our strength in machine learning and data science to broaden computational neuroscience training. The Program Directors have complementary strengths and will have complementary roles in the program. Wang will supervise graduate trainees and focus on training in mechanistic/circuit-level side of computational neuroscience as well as computational psychiatry. Ma will supervise undergraduate trainees and focus on the computational/behavioral side.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wei Ji Ma其他文献

Wei Ji Ma的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wei Ji Ma', 18)}}的其他基金

Training program in computational approaches to brain and behavior
大脑和行为计算方法培训计划
  • 批准号:
    10746646
  • 财政年份:
    2023
  • 资助金额:
    $ 14.06万
  • 项目类别:
Training program in computational approaches to brain and behavior
大脑和行为计算方法培训计划
  • 批准号:
    10879238
  • 财政年份:
    2023
  • 资助金额:
    $ 14.06万
  • 项目类别:
The cognitive mechanisms of complex planning
复杂规划的认知机制
  • 批准号:
    10704613
  • 财政年份:
    2022
  • 资助金额:
    $ 14.06万
  • 项目类别:
The cognitive mechanisms of complex planning
复杂规划的认知机制
  • 批准号:
    10528185
  • 财政年份:
    2022
  • 资助金额:
    $ 14.06万
  • 项目类别:
Probabilistic coding in cortical populations
皮质群体的概率编码
  • 批准号:
    9311636
  • 财政年份:
    2017
  • 资助金额:
    $ 14.06万
  • 项目类别:
Probabilistic coding in cortical populations
皮质群体的概率编码
  • 批准号:
    10133077
  • 财政年份:
    2017
  • 资助金额:
    $ 14.06万
  • 项目类别:
Training a new generation of computational neuroscientists bridging neurobiology and cognition
培训连接神经生物学和认知的新一代计算神经科学家
  • 批准号:
    9767749
  • 财政年份:
    2016
  • 资助金额:
    $ 14.06万
  • 项目类别:
Training a new generation of computational neuroscientists bridging neurobiology and cognition
培训连接神经生物学和认知的新一代计算神经科学家
  • 批准号:
    10002235
  • 财政年份:
    2016
  • 资助金额:
    $ 14.06万
  • 项目类别:
Training a new generation of computational neuroscientists bridging neurobiology
培养连接神经生物学的新一代计算神经科学家
  • 批准号:
    10002209
  • 财政年份:
    2016
  • 资助金额:
    $ 14.06万
  • 项目类别:
Training a new generation of computational neuroscientists bridging neurobiology
培养连接神经生物学的新一代计算神经科学家
  • 批准号:
    9316750
  • 财政年份:
    2016
  • 资助金额:
    $ 14.06万
  • 项目类别:

相似海外基金

CAREER: CAS-Climate: Forecast-informed Flexible Reservoir System Modeling Enabled by Artificial Intelligence Algorithms Using Subseasonal-to-Seasonal Hydroclimatological Forecasts
职业:CAS-气候:利用次季节到季节水文气候预测的人工智能算法实现基于预测的灵活水库系统建模
  • 批准号:
    2236926
  • 财政年份:
    2023
  • 资助金额:
    $ 14.06万
  • 项目类别:
    Continuing Grant
Artificial intelligence algorithms to predict risk of injury in racehorses.
预测赛马受伤风险的人工智能算法。
  • 批准号:
    LP210200798
  • 财政年份:
    2023
  • 资助金额:
    $ 14.06万
  • 项目类别:
    Linkage Projects
Performance-Based Earthquake Engineering 2.0: Machine-Learning and Artificial Intelligence Algorithms for seismic hazard and vulnerability.
基于性能的地震工程 2.0:地震灾害和脆弱性的机器学习和人工智能算法。
  • 批准号:
    2765246
  • 财政年份:
    2022
  • 资助金额:
    $ 14.06万
  • 项目类别:
    Studentship
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221742
  • 财政年份:
    2022
  • 资助金额:
    $ 14.06万
  • 项目类别:
    Standard Grant
The 'risk of risk': remodelling artificial intelligence algorithms for predicting child abuse.
“风险中的风险”:重塑人工智能算法以预测虐待儿童行为。
  • 批准号:
    ES/R00983X/2
  • 财政年份:
    2022
  • 资助金额:
    $ 14.06万
  • 项目类别:
    Research Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221741
  • 财政年份:
    2022
  • 资助金额:
    $ 14.06万
  • 项目类别:
    Standard Grant
Developing a platform for deep phenotyping of heart failure with preserved ejection fraction using raw, widely-available, multi-modality data and artificial intelligence algorithms
使用原始、广泛可用的多模态数据和人工智能算法,开发一个对射血分数保留的心力衰竭进行深度表型分析的平台
  • 批准号:
    10683803
  • 财政年份:
    2022
  • 资助金额:
    $ 14.06万
  • 项目类别:
Early-assymptomatic-dementia prediction based on a white-matter biomarker using Artificial Intelligence algorithms
使用人工智能算法基于白质生物标志物的早期无症状痴呆症预测
  • 批准号:
    460558
  • 财政年份:
    2022
  • 资助金额:
    $ 14.06万
  • 项目类别:
Concluding 50 Years of Research in Wireless Communications: Algorithms for Artificial Intelligence and Optimization in Networks Beyond 5G and Thereafter
总结无线通信 50 年的研究:5G 及以后网络中的人工智能和优化算法
  • 批准号:
    RGPIN-2022-04417
  • 财政年份:
    2022
  • 资助金额:
    $ 14.06万
  • 项目类别:
    Discovery Grants Program - Individual
De novo development of small CRISPR-Cas proteins using artificial intelligence algorithms
使用人工智能算法从头开发小型 CRISPR-Cas 蛋白
  • 批准号:
    10544772
  • 财政年份:
    2022
  • 资助金额:
    $ 14.06万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了