Training a new generation of computational neuroscientists bridging neurobiology
培养连接神经生物学的新一代计算神经科学家
基本信息
- 批准号:9316750
- 负责人:
- 金额:$ 20.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-15 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcademiaAlgorithmsArtificial IntelligenceBehavioralBrainClinical ResearchComputer SimulationData AnalysesData ScienceDevelopmentEducationEducational process of instructingEnsureFacultyGenerationsGrantHumanImpairmentIndustryInstitutesLearningLinkMachine LearningMathematicsMedicalMental HealthMental disordersMentorsMentorshipMethodsModelingNeurobiologyNeurosciencesNew YorkOccupationsPreparationPsychiatryPsychologyResearchRoleScienceSideStudentsTeacher Professional DevelopmentTechniquesTrainingTraining ProgramsUniversitiescognitive functioncomputational neurosciencecomputer sciencedesigninnovationmedical schoolsneural circuitprogramsrelating to nervous systemtheoriesundergraduate education
项目摘要
The Training Program in Computational Neuroscience (TPCN) will support integrated
undergraduate and graduate training in computational neuroscience at New York University. The program will be hosted
by the Center for Neural Science (CNS), with participation of faculty in the Departments of
Psychology, Mathematics, and Computer Science, and the Institute of Neuroscience at the School of
Medicine. The TPCN will fit well with NYU’s unique strengths and recent developments: (1) NYU is
one of a few universities with a critical mass of computational neuroscientists. NYU has had a
Sloan-Swartz Center for Theoretical Neuroscience since 1994. In the past three years alone, NYU has
hired three computational neuroscientists. (2) CNS established an undergraduate major in
neuroscience as early as 1992, and thus has a long track record in undergraduate education, it now
has 136 students in the current academic year. (3) Recent faculty hiring in CNS, Psychology, and
the School of Medicine has greatly expanded our teaching and research capabilities in the
neuroscience of cognitive functions and their impairments associated with mental disorders. (3) As
NYU is undertaking a merge of two historically separated neuroscience graduate programs (at CNS
and the School of Medicine), this training grant will ensure that computational modeling,
which has become indispensible in neuroscience, will be front-and-center in the integrated graduate
program. (4) NYU is a major center of Artificial Intelligence and Data Science, with close links to
Facebook’s AI Center and the Simons Center for Data Analysis. Our training faculty together with
these connections will give our students ample opportunities to acquire machine learning techniques
for data analysis and learn about brain-like AI algorithms.
The proposed training program will support coherent undergraduate and graduate training in
computational neuroscience at NYU. It will have several unique features: (1) Innovative mentorship
methods: For example,
(a) graduate trainees will mentor undergraduate trainees, (b) faculty will explicitly discuss human
factors in academic practice; (c) there will be post-mortems after seminars by outside speakers.
(2) Computational psychiatry: We propose new courses and research opportunities that are designed
specifically to link cognitive function and the neurobiology of neural circuits. We propose
innovative education in the nascent field of Computational Psychiatry, to bring theory and circuit
modeling to clinical research in mental health. (3) Broad preparation: We aim to prepare trainees
for jobs not only in academia, but also in medical and industry research. To achieve this, we
will utilize our strength in machine learning and data science to broaden computational
neuroscience training. The Program Directors have complementary strengths and will have
complementary roles in the program. Wang will supervise graduate trainees and focus on training in
mechanistic/circuit-level side of computational neuroscience as well as computational psychiatry.
Ma will supervise undergraduate trainees and focus on the computational/behavioral side.
在计算神经科学(TPCN)的培训计划将支持集成
在纽约大学接受计算神经科学的本科生和研究生培训。节目将由
由神经科学中心(CNS),与教师的参与部门,
心理学,数学和计算机科学,以及神经科学研究所在学校
药TPCN将非常适合纽约大学的独特优势和最近的发展:(1)纽约大学是
是为数不多的拥有大量计算神经科学家的大学之一。纽约大学有一个
斯隆-斯沃茨理论神经科学中心(Sloan-Swartz Center for Theoretical Neuroscience),1994年至今。仅在过去的三年里,纽约大学
雇了三个计算神经科学家(2)CNS设立了一个本科专业,
神经科学早在1992年,因此在本科教育中有很长的记录,它现在
本学年有136名学生。(3)最近在CNS,心理学和
医学院大大扩展了我们的教学和研究能力,
认知功能及其与精神障碍相关的损害的神经科学。(3)作为
纽约大学正在进行两个历史上分离的神经科学研究生课程的合并(在CNS
和医学院),这项培训补助金将确保计算建模,
它已经成为神经科学中不可或缺的一部分,将成为综合研究生院的前沿和中心。
程序. (4)纽约大学是人工智能和数据科学的主要中心,与
Facebook的人工智能中心和西蒙斯数据分析中心。我们的培训教师与
这些联系将为我们的学生提供充足的机会来获得机器学习技术
进行数据分析并学习类脑AI算法。
拟议的培训计划将支持连贯的本科生和研究生培训,
计算神经科学它将有几个独特的特点:(1)创新的导师制
方法:例如,
(a)研究生学员将指导本科学员,(B)教师将明确讨论人类
(c)在由外界人士主讲的研讨会后,会进行事后检讨。
(2)计算精神病学:我们提出专门设计的新课程和研究机会
特别是将认知功能和神经回路的神经生物学联系起来。我们提出
在计算精神病学的新生领域的创新教育,使理论和电路
心理健康的临床研究建模。(3)广泛的准备:我们的目标是培养学员
不仅在学术界,而且在医学和工业研究中。因此我们
我们将利用我们在机器学习和数据科学方面的优势,
神经科学训练项目主管具有互补优势,
在节目中扮演互补角色。王将监督研究生学员,并专注于
计算神经科学和计算精神病学的机械/电路层面。
Ma将监督本科学员,并专注于计算/行为方面。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Ji Ma其他文献
Wei Ji Ma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Ji Ma', 18)}}的其他基金
Training program in computational approaches to brain and behavior
大脑和行为计算方法培训计划
- 批准号:
10746646 - 财政年份:2023
- 资助金额:
$ 20.5万 - 项目类别:
Training program in computational approaches to brain and behavior
大脑和行为计算方法培训计划
- 批准号:
10879238 - 财政年份:2023
- 资助金额:
$ 20.5万 - 项目类别:
Training a new generation of computational neuroscientists bridging neurobiology and cognition
培训连接神经生物学和认知的新一代计算神经科学家
- 批准号:
9767749 - 财政年份:2016
- 资助金额:
$ 20.5万 - 项目类别:
Training a new generation of computational neuroscientists bridging neurobiology and cognition
培训连接神经生物学和认知的新一代计算神经科学家
- 批准号:
9246915 - 财政年份:2016
- 资助金额:
$ 20.5万 - 项目类别:
Training a new generation of computational neuroscientists bridging neurobiology and cognition
培训连接神经生物学和认知的新一代计算神经科学家
- 批准号:
10002235 - 财政年份:2016
- 资助金额:
$ 20.5万 - 项目类别:
Training a new generation of computational neuroscientists bridging neurobiology
培养连接神经生物学的新一代计算神经科学家
- 批准号:
10002209 - 财政年份:2016
- 资助金额:
$ 20.5万 - 项目类别:
相似海外基金
CAREER: CAS-Climate: Forecast-informed Flexible Reservoir System Modeling Enabled by Artificial Intelligence Algorithms Using Subseasonal-to-Seasonal Hydroclimatological Forecasts
职业:CAS-气候:利用次季节到季节水文气候预测的人工智能算法实现基于预测的灵活水库系统建模
- 批准号:
2236926 - 财政年份:2023
- 资助金额:
$ 20.5万 - 项目类别:
Continuing Grant
Artificial intelligence algorithms to predict risk of injury in racehorses.
预测赛马受伤风险的人工智能算法。
- 批准号:
LP210200798 - 财政年份:2023
- 资助金额:
$ 20.5万 - 项目类别:
Linkage Projects
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221742 - 财政年份:2022
- 资助金额:
$ 20.5万 - 项目类别:
Standard Grant
Performance-Based Earthquake Engineering 2.0: Machine-Learning and Artificial Intelligence Algorithms for seismic hazard and vulnerability.
基于性能的地震工程 2.0:地震灾害和脆弱性的机器学习和人工智能算法。
- 批准号:
2765246 - 财政年份:2022
- 资助金额:
$ 20.5万 - 项目类别:
Studentship
The 'risk of risk': remodelling artificial intelligence algorithms for predicting child abuse.
“风险中的风险”:重塑人工智能算法以预测虐待儿童行为。
- 批准号:
ES/R00983X/2 - 财政年份:2022
- 资助金额:
$ 20.5万 - 项目类别:
Research Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221741 - 财政年份:2022
- 资助金额:
$ 20.5万 - 项目类别:
Standard Grant
Developing a platform for deep phenotyping of heart failure with preserved ejection fraction using raw, widely-available, multi-modality data and artificial intelligence algorithms
使用原始、广泛可用的多模态数据和人工智能算法,开发一个对射血分数保留的心力衰竭进行深度表型分析的平台
- 批准号:
10683803 - 财政年份:2022
- 资助金额:
$ 20.5万 - 项目类别:
Early-assymptomatic-dementia prediction based on a white-matter biomarker using Artificial Intelligence algorithms
使用人工智能算法基于白质生物标志物的早期无症状痴呆症预测
- 批准号:
460558 - 财政年份:2022
- 资助金额:
$ 20.5万 - 项目类别:
Concluding 50 Years of Research in Wireless Communications: Algorithms for Artificial Intelligence and Optimization in Networks Beyond 5G and Thereafter
总结无线通信 50 年的研究:5G 及以后网络中的人工智能和优化算法
- 批准号:
RGPIN-2022-04417 - 财政年份:2022
- 资助金额:
$ 20.5万 - 项目类别:
Discovery Grants Program - Individual
De novo development of small CRISPR-Cas proteins using artificial intelligence algorithms
使用人工智能算法从头开发小型 CRISPR-Cas 蛋白
- 批准号:
10544772 - 财政年份:2022
- 资助金额:
$ 20.5万 - 项目类别: