Integrating cheminformatics and molecular simulations for virtual drug screening
整合化学信息学和分子模拟进行虚拟药物筛选
基本信息
- 批准号:8858750
- 负责人:
- 金额:$ 29.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-15 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAddressAffectAffinityBenchmarkingBindingBinding SitesBiologicalBiological AssayChemicalsComputational GeometryComputer SimulationComputing MethodologiesData SetDescriptorDevelopmentDockingEnzymesG-Protein-Coupled ReceptorsGoalsHybridsLeadLibrariesLifeLigand BindingLigandsMachine LearningMalignant NeoplasmsMarriageMethodologyMethodsMiningModelingMolecularMolecular BankMolecular ConformationOrphanPerformancePharmaceutical PreparationsPhosphotransferasesPlanning TechniquesPreclinical Drug EvaluationProcessProteinsProtocols documentationQuantitative Structure-Activity RelationshipResearchSeriesSideStagingStructureTechniquesTechnologyTestingValidationVertebral columnbasecheminformaticscomputerized toolsdrug discoveryexperienceflexibilityimprovedimproved outcomeinnovationnovelnovel strategiesprogramspublic health relevancereceptor bindingresearch studyscreeningsimulationsmall moleculesmall molecule librariessperm celltherapeutic targetthree dimensional structuretooluser friendly softwarevirtual
项目摘要
DESCRIPTION (provided by applicant): The development of highly efficient and accurate approaches to structure-based virtual screening (VS) continues to represent a formidable challenge in the field of computational drug discovery. Outstanding and widely recognized research problems in the field include the relative computational inefficiency of most approaches, which limits the size of molecular libraries used for virtual screening; the low hit rate; and the inaccurate prediction of ligand binding affinity and pose. The proposed studies address these challenges by using innovative and computationally efficient approaches to VS that fully integrate concepts from the complementary fields of cheminformatics and molecular simulation to devise an integrated two-step VS methodology. Building upon our experience in cheminformatics and QSAR modeling, we aim to develop novel, computationally efficient cheminformatics approaches to pre-process very large (on the order of 107 compounds) chemical libraries available for biological screening, and eliminate up to 99% of improbable ligands. Only the remaining 1% of probable ligands will be evaluated by slower but accurate ensemble flexible docking approaches relying on molecular simulation techniques. The cheminformatics step will also produce important information on privileged protein-ligand interactions that will be used in a live-processing step to guide the structure-based virtual screening and avoid oversampling of ligand poses. Moreover, post- processing cheminformatics methods will be implemented to filter out decoy poses from docking calculations. The ultimate goal of our hybrid methodology is to arrive at a small set of high-affinity computational hits in receptor-bound conformations that can be validated experimentally. We will pursue this goal following three specific aims: 1) Develop novel cheminformatics-based virtual screening approaches to eliminate both improbable ligands and improbable poses, as well as generate information on preferred protein-ligand interactions; 2) Develop new, efficient flexible ensemble docking methods guided by the preferred protein- ligand interactions to select the most probable ligands and predict their binding poses; 3) Apply the developed hierarchical virtual screening workflow to several therapeutic targets and test high-confidence computational hits in experimental assays. All computational tools resulting from this project will be made publicly available. This proposal is innovative because the proposed VS platform will result from a unique marriage of disparate approaches for VS, combining their corresponding strengths. This proposal is significant because the implementation of this project will enable substantial improvement in the efficiency, accuracy, and experimentally-confirmed impact of structure-based drug discovery tools.
描述(由申请人提供):基于结构的虚拟筛选(VS)的高效和准确方法的开发仍然代表着计算药物发现领域的巨大挑战。该领域中突出的和广泛认可的研究问题包括大多数方法的相对计算效率低,这限制了用于虚拟筛选的分子库的大小;命中率低;以及配体结合亲和力和姿态的不准确预测。拟议的研究解决这些挑战,通过使用创新和计算效率高的方法VS,充分整合的概念,从化学信息学和分子模拟的互补领域,设计一个集成的两步VS方法。基于我们在化学信息学和QSAR建模方面的经验,我们的目标是开发新的,计算效率高的化学信息学方法,以预处理可用于生物筛选的非常大的(约107种化合物)化学库,并消除高达99%的不可能配体。只有剩下的1%的可能配体将进行评估较慢,但准确的合奏灵活对接方法依赖于分子模拟技术。化学信息学步骤还将产生关于特权蛋白质-配体相互作用的重要信息,这些信息将用于实时处理步骤,以指导基于结构的虚拟筛选并避免配体姿势的过采样。此外,后处理化学信息学方法将被实施,以过滤出诱饵姿态从对接计算。我们的混合方法的最终目标是达到一个小的一套高亲和力的计算命中受体结合的构象,可以通过实验验证。我们将从以下三个方面来实现这一目标:1)开发基于化学信息学的虚拟筛选方法,以消除不可能的配体和不可能的位姿,并产生蛋白质-配体相互作用的信息; 2)开发新的、高效的、灵活的、由蛋白质-配体相互作用引导的系综对接方法,以选择最可能的配体并预测其结合位姿; 3)将开发的分层虚拟筛选工作流程应用于几个治疗靶标,并在实验测定中测试高置信度计算命中。该项目产生的所有计算工具都将公开提供。这一提议具有创新性,因为拟议的虚拟现实平台将是虚拟现实不同方法的独特结合,结合了它们相应的优势。这一提议意义重大,因为该项目的实施将大大提高基于结构的药物发现工具的效率、准确性和实验证实的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NIKOLAY DOKHOLYAN其他文献
NIKOLAY DOKHOLYAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NIKOLAY DOKHOLYAN', 18)}}的其他基金
AI-based Mapping of Complex Cannabis Extracts in Pain Pathways
基于人工智能的疼痛通路中复杂大麻提取物的绘图
- 批准号:
10659413 - 财政年份:2023
- 资助金额:
$ 29.33万 - 项目类别:
Discovery of functionally selective dopamine ligands for age-related cognitive decline
发现功能选择性多巴胺配体治疗与年龄相关的认知衰退
- 批准号:
10183430 - 财政年份:2021
- 资助金额:
$ 29.33万 - 项目类别:
Nanoscale programming of cellular and physiological phenotypes: Equipment
细胞和生理表型的纳米级编程:设备
- 批准号:
10382641 - 财政年份:2020
- 资助金额:
$ 29.33万 - 项目类别:
Nanoscale programing of cellular and physiological phenotypes
细胞和生理表型的纳米级编程
- 批准号:
10543756 - 财政年份:2020
- 资助金额:
$ 29.33万 - 项目类别:
Nanoscale programing of cellular and physiological phenotypes
细胞和生理表型的纳米级编程
- 批准号:
10320006 - 财政年份:2020
- 资助金额:
$ 29.33万 - 项目类别:
Immunogen Design to Target Carbohydrate-Occluded Epitopes on the HIV envelope
针对 HIV 包膜上碳水化合物封闭表位的免疫原设计
- 批准号:
8496715 - 财政年份:2012
- 资助金额:
$ 29.33万 - 项目类别:
Immunogen Design to Target Carbohydrate-Occluded Epitopes on the HIV envelope
针对 HIV 包膜上碳水化合物封闭表位的免疫原设计
- 批准号:
8681357 - 财政年份:2012
- 资助金额:
$ 29.33万 - 项目类别:
Immunogen Design to Target Carbohydrate-Occluded Epitopes on the HIV envelope
针对 HIV 包膜上碳水化合物封闭表位的免疫原设计
- 批准号:
8860109 - 财政年份:2012
- 资助金额:
$ 29.33万 - 项目类别:
Immunogen Design to Target Carbohydrate-Occluded Epitopes on the HIV envelope
针对 HIV 包膜上碳水化合物封闭表位的免疫原设计
- 批准号:
8410243 - 财政年份:2012
- 资助金额:
$ 29.33万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 29.33万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 29.33万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 29.33万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 29.33万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 29.33万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 29.33万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 29.33万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 29.33万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 29.33万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 29.33万 - 项目类别:
Research Grant














{{item.name}}会员




