AI-based Mapping of Complex Cannabis Extracts in Pain Pathways

基于人工智能的疼痛通路中复杂大麻提取物的绘图

基本信息

项目摘要

ABSTRACT There is tremendous interest in cannabis (as smoked marijuana or CBD- or THC-dominant extracts) as a therapeutic modality for a variety of health indications (including chronic pain). Given the complexity of cannabis, however, we have little insight into its mechanisms of action in complementary and integrative health approaches. Specifically, there is a prevailing notion that the 100+ cannabinoids and the various terpenoids/flavonoids that comprise cannabis act in concert to create an “Entourage Effect”. A comprehensive analysis is required to better understand the potential of cannabis agents as complementary medicines. We herein propose a novel artificial intelligence-driven approach to address this gap in our knowledge. Not surprisingly, a natural product (e.g., cannabis) that is active in an organism typically works because it acts like endogenous ligands or those known to the organism. We hypothesize that deconstructing ligand structures into specific fragments will allow us to identify targets that bind endogenous tergets containing such fragments. Moreover, we believe that disparate compounds acting in concert will maximally engage selective pathways. We have developed an artificial intelligence (AI)-driven platform, DRIFT (drug-target identification based on chemical similarity), to map ligand compounds (cannabinoids and terpenoids) to molecular targets. Thus, we can illuminate involved cellular pathways, and predict physiological response. We will use DRIFT to profile compounds in a number of different cannabis extracts (e.g., high in CBD, CBG, or THC) with varying analgesic properties to identify therapeutic combinations and their relevant targets. We will undertake three specific aims. In Specific Aim 1, use DRIFT for massive mapping of cannabis constituents to corresponding target proteins. Then, in Specific Aim 2, we will extend the DRIFT platform by evaluating binding affinities between metabolites and their proteins using a new neural network paradigm (NeuralDock). We will use text mining techniques to mine compound-protein relationships from PubMed. Finally, in Specific Aim 3, we will experimentally validate the outputs of the DRIFT platform to predict mechanisms of cannabis on pain. We will test the AI-based results using traditional pharmacology tools and a variety of preclinical animal models of pain. These same models will then be employed to test mechanisms through the complementary use of agonists, antagonists, inhibitors and (where appropriate) gene knockouts to validate mechanisms. When these studies are successful, we will have validated DRIFT as a new and valuable AI tool for studying natural products. Moreover, we will provide important insights into the growing use of cannabis in complementary and integrative health.
摘要 人们对大麻(作为吸食大麻或CBD或THC占主导地位的提取物)作为一种 用于各种健康适应症(包括慢性疼痛)的治疗方式。考虑到 然而,大麻,我们对其在补充和综合健康方面的作用机制知之甚少。 接近。具体来说,有一种流行的观点认为,100多种大麻素和各种大麻素, 组成大麻的萜类化合物/类黄酮协同作用以产生“随行效应”。全面 需要进行分析,以更好地了解大麻制剂作为补充药物的潜力。我们 本文提出了一种新颖人工智能驱动的方法来解决我们知识中的这一差距。 毫不奇怪,天然产物(例如,大麻)在生物体中具有活性通常是因为它的作用 如内源性配体或生物体已知的配体。我们假设解构配体 将这种结构转化为特定片段将使我们能够鉴定结合含有这种结构的内源性靶点的靶点。 片段此外,我们认为,不同的化合物协同作用将最大限度地参与选择性 途径。我们开发了一个人工智能(AI)驱动的平台DRIFT(药物靶点识别 基于化学相似性),以将配体化合物(大麻素和萜类化合物)映射到分子靶标。 因此,我们可以阐明相关的细胞通路,并预测生理反应。我们将使用DRIFT 在许多不同的大麻提取物中分析化合物(例如,高CBD,CBG或THC), 镇痛性质,以确定治疗组合及其相关靶标。我们将承担三个 具体目标。在具体目标1中,使用DRIFT将大麻成分大量映射到相应的 靶蛋白。然后,在具体目标2中,我们将通过评估结合亲和力来扩展DRIFT平台 使用新的神经网络范例(NeuralDock)在代谢物及其蛋白质之间进行比较。我们将使用文本 从PubMed挖掘化合物-蛋白质关系的挖掘技术。最后,在具体目标3中,我们将 实验验证DRIFT平台的输出,以预测大麻对疼痛的机制。我们将 使用传统的药理学工具和各种临床前动物模型测试基于AI的结果, 痛苦然后,这些相同的模型将通过补充使用 激动剂、拮抗剂、抑制剂和(适当时)基因敲除以验证机制。 当这些研究成功时,我们将验证DRIFT是一种新的有价值的AI工具, 天然产品。此外,我们将提供重要的见解越来越多的大麻使用, 互补和综合健康。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NIKOLAY DOKHOLYAN其他文献

NIKOLAY DOKHOLYAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NIKOLAY DOKHOLYAN', 18)}}的其他基金

Discovery of functionally selective dopamine ligands for age-related cognitive decline
发现功能选择性多巴胺配体治疗与年龄相关的认知衰退
  • 批准号:
    10183430
  • 财政年份:
    2021
  • 资助金额:
    $ 53.61万
  • 项目类别:
Nanoscale programming of cellular and physiological phenotypes: Equipment
细胞和生理表型的纳米级编程:设备
  • 批准号:
    10382641
  • 财政年份:
    2020
  • 资助金额:
    $ 53.61万
  • 项目类别:
Nanoscale programing of cellular and physiological phenotypes
细胞和生理表型的纳米级编程
  • 批准号:
    10543756
  • 财政年份:
    2020
  • 资助金额:
    $ 53.61万
  • 项目类别:
Nanoscale programing of cellular and physiological phenotypes
细胞和生理表型的纳米级编程
  • 批准号:
    10320006
  • 财政年份:
    2020
  • 资助金额:
    $ 53.61万
  • 项目类别:
Integrating cheminformatics and molecular simulations for virtual drug screening
整合化学信息学和分子模拟进行虚拟药物筛选
  • 批准号:
    8858750
  • 财政年份:
    2016
  • 资助金额:
    $ 53.61万
  • 项目类别:
Immunogen Design to Target Carbohydrate-Occluded Epitopes on the HIV envelope
针对 HIV 包膜上碳水化合物封闭表位的免疫原设计
  • 批准号:
    8496715
  • 财政年份:
    2012
  • 资助金额:
    $ 53.61万
  • 项目类别:
Immunogen Design to Target Carbohydrate-Occluded Epitopes on the HIV envelope
针对 HIV 包膜上碳水化合物封闭表位的免疫原设计
  • 批准号:
    8681357
  • 财政年份:
    2012
  • 资助金额:
    $ 53.61万
  • 项目类别:
Immunogen Design to Target Carbohydrate-Occluded Epitopes on the HIV envelope
针对 HIV 包膜上碳水化合物封闭表位的免疫原设计
  • 批准号:
    8860109
  • 财政年份:
    2012
  • 资助金额:
    $ 53.61万
  • 项目类别:
Immunogen Design to Target Carbohydrate-Occluded Epitopes on the HIV envelope
针对 HIV 包膜上碳水化合物封闭表位的免疫原设计
  • 批准号:
    8410243
  • 财政年份:
    2012
  • 资助金额:
    $ 53.61万
  • 项目类别:
Protein Misfolding and Aggregation
蛋白质错误折叠和聚集
  • 批准号:
    7818210
  • 财政年份:
    2009
  • 资助金额:
    $ 53.61万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 53.61万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 53.61万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.61万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.61万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 53.61万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.61万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 53.61万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 53.61万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 53.61万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.61万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了