Geostatistical software for space-time interpolation and uncertainty modeling
用于时空插值和不确定性建模的地统计软件
基本信息
- 批准号:9138888
- 负责人:
- 金额:$ 42.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2019-02-28
- 项目状态:已结题
- 来源:
- 关键词:AirAir PollutantsAir PollutionAlgorithmsAnisotropyAsthmaBackBirthCardiovascular systemCensusesChildCitiesCommunitiesComputer softwareDataData AnalysesData SetDevelopmentEnvironmentEnvironmental Engineering technologyEnvironmental ExposureEnvironmental HealthEvaluationFeedbackFrequenciesGeographyHealthHealth SciencesHeart DiseasesHeat WavesImageryIndividualInvestigationLocationMalignant NeoplasmsMeasurementMeasuresMethodologyMethodsMexicoMichiganModelingNuclearOutcomePatientsPatternPerformancePhasePilot ProjectsProcessProtocols documentationPublic HealthRegression AnalysisResearchResearch PersonnelSamplingSmall Business Innovation Research GrantSpace ModelsTest ResultTestingTimeTime trendUncertaintyUnited States National Institutes of HealthUniversitiesVisitbaseclimate changedensitydesignepidemiology studyexposed human populationextreme heatimprovedinnovationland usemortalitymultithreadingpollutantprototypepublic health relevancereconstructionremote sensingrespiratorysimulationsoundtemporal measurementtime intervaltoolusabilityuser-friendly
项目摘要
DESCRIPTION (provided by applicant): A key component in any investigation of association and/or cause-effect relationships between the environment (e.g. air pollution, heat waves) and health outcomes (e.g. asthma, heart disease, cancer) is the availability of accurate models of exposure at the same geographical scale and temporal resolution as the health outcomes. The computation of human exposure is particularly challenging for cancers since they may take years or decades to develop, especially in presence of low level of contaminants. In this situation pollutant levels are rarely available for every location and time interval visited by the
subjects; therefore data gaps need to be filled-in through space-time (ST) interpolation. Surprisingly, there is currently no commercial software for the geostatistical treatment of space-time data, including the interpolation at unmonitored times and locations. This SBIR project is developing the first commercial software to offer tools for geostatistical ST interpolation and modeling of uncertainty. The research product will be a stand-alone module into the desktop space-time visualization core developed by BioMedware, an Esri partner. This software package will offer a comprehensive suite for: 1) the computation and advisor-guided modeling of ST variograms, 2) the ST prediction and stochastic modeling of exposure data at the same scale as health outcome (i.e. aggregated or individual-level) and using any secondary information available (e.g. remote sensing, land-use regression model, air dispersion model, other air pollutants), and 3) the quantification and Monte-Carlo based propagation of uncertainty attached to estimates through exposure reconstruction. These tools will be suited for the analysis of data outside health sciences, such as in remote sensing, nuclear environmental engineering or climate change, broadening significantly the commercial market for the end product. This project will accomplish four aims: Expand the statistical methodology developed in Phase I to tackle: 1) the case where multiple correlated attributes (e.g. air pollutants) were measured with different sampling densities and temporal frequencies, which will require developing ST cokriging and testing its performance over the kriging approach implemented in Phase I, and 2) stochastic modeling and propagation of exposure uncertainty (exposure measurement errors) through regression analysis. Build a fully functional and tested ST interpolation and simulation module ready for commercial distribution. Conduct a usability study to evaluate the design of the prototype based on NIH usability protocols. Apply the software to demonstrate the approach and its unique benefits in several epidemiological studies, including impact of air pollution on birth outcomes and urban extreme heat on cardiovascular mortality. These technologic, scientific and commercial innovations will revolutionize our ability to model geostatistically space-time phenomena and compute estimates and the associated uncertainty at the scale (e.g. point location, census-tract level) the most relevant for environmental epidemiological studies.
描述(通过应用程序提供):在环境(例如空气污染,热浪)和健康结果(例如哮喘,心脏病,癌症)之间进行任何关联和/或因果关系关系的关键组成部分是在相同地理量表和临时分辨率和临时分辨率上的准确暴露模型。人类暴露的计算对于癌症来说尤其具有挑战性,因为它们可能需要数年或数十年的发展,尤其是在污染物含量低的情况下。在这种情况下
受试者;因此,需要通过时空(ST)插值填充数据差距。令人惊讶的是,目前尚无商业软件用于对时空数据的地理处理处理,包括在意外时间和位置进行插值。该SBIR项目正在开发第一个为地理插值和不确定性建模提供工具的商业软件。该研究产品将是由ESRI合作伙伴Biomedware开发的桌面时空可视化核心的独立模块。 This software package will offer a comprehensive suite for: 1) the computation and advisor-guided modeling of ST variousograms, 2) the ST prediction and stochastic modeling of exposure data at the same scale as health outcome (i.e. aggregated or individual-level) and using any secondary information available (e.g. remote sensing, land-use regression model, air dispersion model, other air pollutants), and 3) the quantification and Monte-Carlo based通过暴露重建所附加的不确定性传播。这些工具将适用于分析健康科学以外的数据,例如遥感,核环境工程或气候变化,从而大大拓宽了最终产品的商业市场。该项目将实现四个目标:扩展第I阶段开发的统计方法:1)通过不同的采样密度和临时频率测量了多个相关属性(例如空气污染物)的情况,这将需要开发st cokrig and s cokrig tempory and Inter Inter Inter Interive Interive and cromentions(2)的临时方法,并在2)中实现了(2)的构图(2)的构图(2),并进一步构图(2)构图(2)的构图(2)构图(2)的构图(2)构图(2)的构图(2)进化(进一步)的模型(通过回归分析。构建一个功能齐全且经过测试的ST插值和仿真模块,准备商业分布。进行一项可用性研究,以根据NIH可用性协议评估原型的设计。在几项流行病学研究中应用该软件来证明该方法及其独特的好处,包括空气污染对出生结果和城市极端热量对心血管死亡率的影响。这些技术,科学和商业创新将彻底改变我们对地列为时空现象和计算估计以及相关的不确定性对环境流行病学研究最相关的相关不确定性的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PIERRE E GOOVAERTS其他文献
PIERRE E GOOVAERTS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PIERRE E GOOVAERTS', 18)}}的其他基金
Geostatistical Software for Non-Parametric Geostatistical Modeling of Uncertainty
用于不确定性非参数地统计建模的地统计软件
- 批准号:
10697081 - 财政年份:2023
- 资助金额:
$ 42.87万 - 项目类别:
Geostatistical software for merging multivariate data with various spatial supports
用于将多元数据与各种空间支持合并的地统计软件
- 批准号:
10468323 - 财政年份:2020
- 资助金额:
$ 42.87万 - 项目类别:
Geostatistical software for merging multivariate data with various spatial supports
用于将多元数据与各种空间支持合并的地统计软件
- 批准号:
10006357 - 财政年份:2020
- 资助金额:
$ 42.87万 - 项目类别:
Geostatistical software for merging multivariate data with various spatial supports
用于将多元数据与各种空间支持合并的地统计软件
- 批准号:
10323718 - 财政年份:2020
- 资助金额:
$ 42.87万 - 项目类别:
Geostatistical software for spatial and multi-dimensional joinpoint regression analysis of time series of health outcomes
用于健康结果时间序列的空间和多维连接点回归分析的地统计软件
- 批准号:
9047005 - 财政年份:2016
- 资助金额:
$ 42.87万 - 项目类别:
Geostatistical software for space-time interpolation and uncertainty modeling
用于时空插值和不确定性建模的地统计软件
- 批准号:
8523583 - 财政年份:2013
- 资助金额:
$ 42.87万 - 项目类别:
A geostatistical framework for the multi-scale boundary analysis of space-time tr
时空TR多尺度边界分析的地统计框架
- 批准号:
8588323 - 财政年份:2012
- 资助金额:
$ 42.87万 - 项目类别:
A geostatistical framework for the multi-scale boundary analysis of space-time tr
时空TR多尺度边界分析的地统计框架
- 批准号:
8444188 - 财政年份:2012
- 资助金额:
$ 42.87万 - 项目类别:
Three-dimensional visualization, interactive analysis and contextual mapping of s
三维可视化、交互式分析和上下文映射
- 批准号:
7908050 - 财政年份:2010
- 资助金额:
$ 42.87万 - 项目类别:
SBIR PHASE II- TOPIC 234- AUTOMATED PATTERN RECOGNITION IN SATELLITE IMAGERY
SBIR 第二阶段 - 主题 234 - 卫星图像中的自动模式识别
- 批准号:
7952599 - 财政年份:2009
- 资助金额:
$ 42.87万 - 项目类别:
相似国自然基金
调控金属–石墨化炭电子相互作用促进氧活化及室内空气污染物室温催化消除
- 批准号:22376165
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
公共室内空气中新污染物的被动采样、筛查和呼吸暴露风险评估研究
- 批准号:22306200
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
针对中等尺寸分子空气污染物检测的金属-有机骨架基传感器及其气敏性能研究
- 批准号:62276174
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
混频异构数据下空气污染物减排与温室气体减排“协同效应”的量化测度及优化控制
- 批准号:72264016
- 批准年份:2022
- 资助金额:28 万元
- 项目类别:地区科学基金项目
针对中等尺寸分子空气污染物检测的金属-有机骨架基传感器及其气敏性能研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Harnessing PET to Study the In Vivo Fate and Health Effects of Micro- and Nanoplastics
利用 PET 研究微塑料和纳米塑料的体内命运和健康影响
- 批准号:
10890903 - 财政年份:2023
- 资助金额:
$ 42.87万 - 项目类别:
Impact of benzene-induced MIA on fetal T cell development
苯诱导的 MIA 对胎儿 T 细胞发育的影响
- 批准号:
10605881 - 财政年份:2023
- 资助金额:
$ 42.87万 - 项目类别:
A Low-Cost Wearable Connected Health Device for Monitoring Environmental Pollution Triggers of Asthma in Communities with Health Disparities
一种低成本可穿戴互联健康设备,用于监测健康差异社区中哮喘的环境污染诱因
- 批准号:
10601615 - 财政年份:2023
- 资助金额:
$ 42.87万 - 项目类别:
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 42.87万 - 项目类别:
AirPressureNYC: Reducing AIR pollution to lower blood PRESSURE among New York City public housing residents
AirPressureNYC:减少空气污染以降低纽约市公共住房居民的血压
- 批准号:
10638946 - 财政年份:2023
- 资助金额:
$ 42.87万 - 项目类别: