Geostatistical software for space-time interpolation and uncertainty modeling
用于时空插值和不确定性建模的地统计软件
基本信息
- 批准号:9138888
- 负责人:
- 金额:$ 42.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2019-02-28
- 项目状态:已结题
- 来源:
- 关键词:AirAir PollutantsAir PollutionAlgorithmsAnisotropyAsthmaBackBirthCardiovascular systemCensusesChildCitiesCommunitiesComputer softwareDataData AnalysesData SetDevelopmentEnvironmentEnvironmental Engineering technologyEnvironmental ExposureEnvironmental HealthEvaluationFeedbackFrequenciesGeographyHealthHealth SciencesHeart DiseasesHeat WavesImageryIndividualInvestigationLocationMalignant NeoplasmsMeasurementMeasuresMethodologyMethodsMexicoMichiganModelingNuclearOutcomePatientsPatternPerformancePhasePilot ProjectsProcessProtocols documentationPublic HealthRegression AnalysisResearchResearch PersonnelSamplingSmall Business Innovation Research GrantSpace ModelsTest ResultTestingTimeTime trendUncertaintyUnited States National Institutes of HealthUniversitiesVisitbaseclimate changedensitydesignepidemiology studyexposed human populationextreme heatimprovedinnovationland usemortalitymultithreadingpollutantprototypepublic health relevancereconstructionremote sensingrespiratorysimulationsoundtemporal measurementtime intervaltoolusabilityuser-friendly
项目摘要
DESCRIPTION (provided by applicant): A key component in any investigation of association and/or cause-effect relationships between the environment (e.g. air pollution, heat waves) and health outcomes (e.g. asthma, heart disease, cancer) is the availability of accurate models of exposure at the same geographical scale and temporal resolution as the health outcomes. The computation of human exposure is particularly challenging for cancers since they may take years or decades to develop, especially in presence of low level of contaminants. In this situation pollutant levels are rarely available for every location and time interval visited by the
subjects; therefore data gaps need to be filled-in through space-time (ST) interpolation. Surprisingly, there is currently no commercial software for the geostatistical treatment of space-time data, including the interpolation at unmonitored times and locations. This SBIR project is developing the first commercial software to offer tools for geostatistical ST interpolation and modeling of uncertainty. The research product will be a stand-alone module into the desktop space-time visualization core developed by BioMedware, an Esri partner. This software package will offer a comprehensive suite for: 1) the computation and advisor-guided modeling of ST variograms, 2) the ST prediction and stochastic modeling of exposure data at the same scale as health outcome (i.e. aggregated or individual-level) and using any secondary information available (e.g. remote sensing, land-use regression model, air dispersion model, other air pollutants), and 3) the quantification and Monte-Carlo based propagation of uncertainty attached to estimates through exposure reconstruction. These tools will be suited for the analysis of data outside health sciences, such as in remote sensing, nuclear environmental engineering or climate change, broadening significantly the commercial market for the end product. This project will accomplish four aims: Expand the statistical methodology developed in Phase I to tackle: 1) the case where multiple correlated attributes (e.g. air pollutants) were measured with different sampling densities and temporal frequencies, which will require developing ST cokriging and testing its performance over the kriging approach implemented in Phase I, and 2) stochastic modeling and propagation of exposure uncertainty (exposure measurement errors) through regression analysis. Build a fully functional and tested ST interpolation and simulation module ready for commercial distribution. Conduct a usability study to evaluate the design of the prototype based on NIH usability protocols. Apply the software to demonstrate the approach and its unique benefits in several epidemiological studies, including impact of air pollution on birth outcomes and urban extreme heat on cardiovascular mortality. These technologic, scientific and commercial innovations will revolutionize our ability to model geostatistically space-time phenomena and compute estimates and the associated uncertainty at the scale (e.g. point location, census-tract level) the most relevant for environmental epidemiological studies.
描述(由申请人提供):在对环境(例如空气污染、热浪)和健康结果(例如哮喘、心脏病、癌症)之间的关联和/或因果关系进行任何调查时,一个关键组成部分是在与健康结果相同的地理尺度和时间分辨率下获得准确的暴露模型。计算人类接触量对癌症来说尤其具有挑战性,因为癌症可能需要数年或数十年的时间才能发展,特别是在低水平污染物的情况下。在这种情况下,污染物水平很少可用于每个地点和时间间隔访问的
因此,需要通过时空插值填补数据空白。令人惊讶的是,目前还没有用于时空数据地质统计处理的商业软件,包括在未监测的时间和地点进行插值。该SBIR项目正在开发第一个商业软件,为地质统计ST插值和不确定性建模提供工具。该研究产品将是由Esri合作伙伴BioMedware开发的桌面时空可视化核心的独立模块。该软件包将提供一个全面的套件,用于:1)ST变差函数的计算和预测器引导的建模,2)与健康结果相同尺度的暴露数据的ST预测和随机建模(即总体或个人层面),并使用任何可用的辅助信息(如遥感、土地利用回归模型、空气扩散模型、其他空气污染物); 3)通过暴露重建对估计值所附的不确定性进行量化和基于蒙特-卡罗的传播。这些工具将适用于分析健康科学以外的数据,如遥感、核环境工程或气候变化,从而大大拓宽最终产品的商业市场。该项目将实现四个目标:1)多个相关属性的情况(例如空气污染物),这将需要开发ST协同克里金法,并测试其在第一阶段实施的克里金法上的性能,以及2)通过回归分析对曝光不确定性(曝光测量误差)进行随机建模和传播。构建一个功能齐全且经过测试的ST插值和仿真模块,可用于商业分发。根据NIH可用性方案进行可用性研究,以评估原型的设计。应用该软件在几项流行病学研究中展示该方法及其独特的益处,包括空气污染对出生结果的影响和城市极端高温对心血管死亡率的影响。这些技术、科学和商业创新将彻底改变我们对地理统计学时空现象进行建模的能力,并在与环境流行病学研究最相关的尺度(例如点位置、普查区一级)上计算估计值和相关的不确定性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PIERRE E GOOVAERTS其他文献
PIERRE E GOOVAERTS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PIERRE E GOOVAERTS', 18)}}的其他基金
Geostatistical Software for Non-Parametric Geostatistical Modeling of Uncertainty
用于不确定性非参数地统计建模的地统计软件
- 批准号:
10697081 - 财政年份:2023
- 资助金额:
$ 42.87万 - 项目类别:
Geostatistical software for merging multivariate data with various spatial supports
用于将多元数据与各种空间支持合并的地统计软件
- 批准号:
10468323 - 财政年份:2020
- 资助金额:
$ 42.87万 - 项目类别:
Geostatistical software for merging multivariate data with various spatial supports
用于将多元数据与各种空间支持合并的地统计软件
- 批准号:
10006357 - 财政年份:2020
- 资助金额:
$ 42.87万 - 项目类别:
Geostatistical software for merging multivariate data with various spatial supports
用于将多元数据与各种空间支持合并的地统计软件
- 批准号:
10323718 - 财政年份:2020
- 资助金额:
$ 42.87万 - 项目类别:
Geostatistical software for spatial and multi-dimensional joinpoint regression analysis of time series of health outcomes
用于健康结果时间序列的空间和多维连接点回归分析的地统计软件
- 批准号:
9047005 - 财政年份:2016
- 资助金额:
$ 42.87万 - 项目类别:
Geostatistical software for space-time interpolation and uncertainty modeling
用于时空插值和不确定性建模的地统计软件
- 批准号:
8523583 - 财政年份:2013
- 资助金额:
$ 42.87万 - 项目类别:
A geostatistical framework for the multi-scale boundary analysis of space-time tr
时空TR多尺度边界分析的地统计框架
- 批准号:
8588323 - 财政年份:2012
- 资助金额:
$ 42.87万 - 项目类别:
A geostatistical framework for the multi-scale boundary analysis of space-time tr
时空TR多尺度边界分析的地统计框架
- 批准号:
8444188 - 财政年份:2012
- 资助金额:
$ 42.87万 - 项目类别:
Three-dimensional visualization, interactive analysis and contextual mapping of s
三维可视化、交互式分析和上下文映射
- 批准号:
7908050 - 财政年份:2010
- 资助金额:
$ 42.87万 - 项目类别:
SBIR PHASE II- TOPIC 234- AUTOMATED PATTERN RECOGNITION IN SATELLITE IMAGERY
SBIR 第二阶段 - 主题 234 - 卫星图像中的自动模式识别
- 批准号:
7952599 - 财政年份:2009
- 资助金额:
$ 42.87万 - 项目类别:
相似海外基金
How are plants responding to damage by oxidizing air pollutants?
植物如何应对氧化空气污染物造成的损害?
- 批准号:
DP230100296 - 财政年份:2023
- 资助金额:
$ 42.87万 - 项目类别:
Discovery Projects
Unified assessment of health effects of multiple air pollutants inducing reactive oxygen species production
统一评估多种引起活性氧产生的空气污染物的健康影响
- 批准号:
22KJ0372 - 财政年份:2023
- 资助金额:
$ 42.87万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Air pollutants, heat exposure, and kidney health: A longitudinal study in women in Central America
空气污染物、热暴露和肾脏健康:针对中美洲女性的纵向研究
- 批准号:
10583301 - 财政年份:2023
- 资助金额:
$ 42.87万 - 项目类别:
Prenatal Traffic-Related Air Pollutants, Placental Epitranscriptomics, and Child Cognition
产前交通相关空气污染物、胎盘表观转录组学和儿童认知
- 批准号:
10366988 - 财政年份:2022
- 资助金额:
$ 42.87万 - 项目类别:
Analysis of the protective effect of metallothioneins against lung injury caused by air pollutants.
金属硫蛋白对空气污染物所致肺损伤的保护作用分析
- 批准号:
22K06588 - 财政年份:2022
- 资助金额:
$ 42.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Novel Approaches for Improving Inflammation Resolution Following Chronic Exposure to Air Pollutants
改善长期接触空气污染物后炎症消退的新方法
- 批准号:
10348421 - 财政年份:2022
- 资助金额:
$ 42.87万 - 项目类别:
Exposure to Ambient Air Pollutants, Circulating microRNAs, and Hepatic Fat Fraction Among Young Adults
年轻人接触环境空气污染物、循环 microRNA 和肝脂肪分数
- 批准号:
10537895 - 财政年份:2022
- 资助金额:
$ 42.87万 - 项目类别:
Development and/or evaluation of emission factors for Odour, air pollutants, greenhouse gas emissions and air quality impact assessment for industrial and municipal sources in cold region
寒冷地区工业和市政源恶臭、空气污染物、温室气体排放排放因子的制定和/或评价以及空气质量影响评价
- 批准号:
RGPIN-2019-07299 - 财政年份:2022
- 资助金额:
$ 42.87万 - 项目类别:
Discovery Grants Program - Individual
Disrupting Noxious Synergies of Indoor Air Pollutants and their Impact in Childhood Health and Wellbeing, using Advanced Intelligent Multisensing and Green Interventions
利用先进的智能多传感和绿色干预措施,破坏室内空气污染物的有害协同作用及其对儿童健康和福祉的影响
- 批准号:
10051924 - 财政年份:2022
- 资助金额:
$ 42.87万 - 项目类别:
EU-Funded
Prenatal Traffic-Related Air Pollutants, Placental Epitranscriptomics, and Child Cognition
产前交通相关空气污染物、胎盘表观转录组学和儿童认知
- 批准号:
10589926 - 财政年份:2022
- 资助金额:
$ 42.87万 - 项目类别: