Statistical Methods for Network-Based Integrative Analysis of CVD Epigenetic Data

基于网络的 CVD 表观遗传数据综合分析统计方法

基本信息

  • 批准号:
    9032704
  • 负责人:
  • 金额:
    $ 14.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-12-15 至 2020-11-30
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): This project involves the development of new statistical methodologies and computational tools for network-based integrative analysis of epigenetic risk factors of cardiovascular diseases (CVD). While the advent of omics data from new technologies has facilitated the study of epigenetic factors, existing methodologies often do not account for complexities of biological data such as correlations due to interactions of genes/proteins as part of biological pathways and fail to efficiently integrate diverse omics data sets for instance genetic variation, DNA methylation and gene expression. The methodologies proposed in this project, and the software tools that will be developed to implement them, address these shortcomings, and facilitate further research by the biomedical community to gain a better understanding of the underlying biology of CVD, and to develop new diagnostic biomarkers and potential targets for therapies. The proposed methodologies are motivated by the study of epigenetic data from the Multi-Ethnic Study of Atherosclerosis (MESA), and include (i) a network-based pathway enrichment analysis method that incorporates available knowledge of interactions among genes and proteins while complementing and refining such information (Aim 1A), as well as its extension for analysis of multiple types of omics data (Aim 1B), and (ii) an integrative analysis framework to identify associations among gene expression levels and DNA methylation (Aim 2A) and identify common epigenetic factors of multiple CVD phenotypes through integrated analysis of DNA methylation and mRNA expression data (Aim 2B). We will develop efficient and user-friendly software tools for the proposed methods (Aim 3), which will be made freely available to the public after extensive tests using both simulated data, as well as real data from MESA.
 描述(由申请人提供):该项目涉及开发新的统计方法和计算工具,用于基于网络的心血管疾病(CVD)表观遗传风险因素的综合分析。虽然来自新技术的组学数据的出现促进了表观遗传因素的研究,但是现有方法通常不能解释生物学数据的复杂性,例如由于作为生物学途径的一部分的基因/蛋白质的相互作用而导致的相关性,并且不能有效地整合不同的组学数据 例如遗传变异、DNA甲基化和基因表达。本项目中提出的方法,以及将开发用于实施这些方法的软件工具,解决了这些缺点,并促进了生物医学界的进一步研究,以更好地了解CVD的基础生物学,并开发新的诊断生物标志物和潜在的治疗靶点。所提出的方法的动机是对来自动脉粥样硬化多种族研究(梅萨)的表观遗传学数据的研究,包括(i)基于网络的途径富集分析方法,该方法结合了基因和蛋白质之间相互作用的现有知识,同时补充和完善了这些信息(Aim 1A),以及其用于分析多种类型组学数据的扩展(Aim 1B),和(ii)一个综合分析框架,以鉴定基因表达水平和DNA甲基化之间的关联(Aim 2A),并通过DNA甲基化和mRNA表达数据的综合分析鉴定多种CVD表型的共同表观遗传因素(Aim 2B)。我们将为所提出的方法(目标3)开发高效和用户友好的软件工具,在使用模拟数据以及梅萨的真实的数据进行广泛测试后,这些软件工具将免费提供给公众。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ALI SHOJAIE其他文献

ALI SHOJAIE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ALI SHOJAIE', 18)}}的其他基金

Data Management and Statistical Core
数据管理与统计核心
  • 批准号:
    10433868
  • 财政年份:
    2020
  • 资助金额:
    $ 14.28万
  • 项目类别:
Novel Statistical Inference for Biomedical Big Data
生物医学大数据的新颖统计推断
  • 批准号:
    10701041
  • 财政年份:
    2020
  • 资助金额:
    $ 14.28万
  • 项目类别:
Data Management and Statistical Core
数据管理与统计核心
  • 批准号:
    10661531
  • 财政年份:
    2020
  • 资助金额:
    $ 14.28万
  • 项目类别:
Novel Statistical Inference for Biomedical Big Data
生物医学大数据的新颖统计推断
  • 批准号:
    10252023
  • 财政年份:
    2020
  • 资助金额:
    $ 14.28万
  • 项目类别:
Machine Learning Tools for Discovery and Analysis of Active Metabolic Pathways
用于发现和分析活跃代谢途径的机器学习工具
  • 批准号:
    9899255
  • 财政年份:
    2016
  • 资助金额:
    $ 14.28万
  • 项目类别:
17th IMS New Researchers Conference
第十七届IMS新研究员大会
  • 批准号:
    8986570
  • 财政年份:
    2015
  • 资助金额:
    $ 14.28万
  • 项目类别:
Summer Institute for Statistics of Big Data
大数据统计暑期学院
  • 批准号:
    8935790
  • 财政年份:
    2014
  • 资助金额:
    $ 14.28万
  • 项目类别:
Summer Institute for Statistics of Big Data
大数据统计暑期学院
  • 批准号:
    8829422
  • 财政年份:
    2014
  • 资助金额:
    $ 14.28万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 14.28万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 14.28万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.28万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.28万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 14.28万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.28万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 14.28万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 14.28万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 14.28万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.28万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了