Machine Learning Tools for Discovery and Analysis of Active Metabolic Pathways

用于发现和分析活跃代谢途径的机器学习工具

基本信息

  • 批准号:
    9899255
  • 负责人:
  • 金额:
    $ 33.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-04-01 至 2022-03-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): This project aims to develop new statistical machine learning methods for metabolomics data from diverse platforms, including targeted and unbiased/global mass spectrometry (MS), labeled MS experiments for measuring metabolic flux and Nuclear Magnetic Resonance (NMR) platforms. Unbiased MS and NMR profiling studies result in identifying a large number of unnamed spectra, which cannot be directly matched to known metabolites and are hence often discarded in downstream analyses. The first aim develops a novel kernel penalized regression method for analysis of data from unbiased profiling studies. It provides a systematic framework for extracting the relevant information from unnamed spectra through a kernel that highlights the similarities and differences between samples, and in turn boosts the signal from named metabolites. This results in improved power in identification of named metabolites associated with the phenotype of interest, as well as improved prediction accuracy. An extension of this kernel-based framework is also proposed to allow for systematic integration of metabolomics data from diverse profiling studies, e.g. targeted and unbiased MS profiling technologies. The second aim pro- vides a formal inference framework for kernel penalized regression and thus complements the discovery phase of the first aim. The third aim focuses on metabolic pathway enrichment analysis that tests both orchestrated changes in activities of steady state metabolites in a given pathway, as well as aberrations in the mechanisms of metabolic reactions. The fourth aim of the project provides a unified framework for network-based integrative analysis of static (based on mass spectrometry) and dynamic (based on metabolic flux) metabolomics measurements, thus providing an integrated view of the metabolome and the fluxome. Finally, the last aim implements the pro- posed methods in easy-to-use open-source software leveraging the R language, the capabilities of the Cytoscape platform and the Galaxy workflow system, thus providing an expandable platform for further developments in the area of metabolomics. The proposed software tool will also provide a plug-in to the Data Repository and Coordination Center (DRCC) data sets, where all regional metabolomics centers supported by the NIH Common Funds Metabolomics Program deposit curated data.
 描述(由申请人提供):该项目旨在为来自不同平台的代谢组学数据开发新的统计机器学习方法,包括有针对性和无偏/全局质谱(MS),用于测量代谢产物的标记MS实验和核磁共振(NMR)平台。无偏MS和NMR分析研究导致识别出大量未命名的光谱,这些光谱无法直接与已知代谢物匹配,因此通常在下游分析中被丢弃。第一个目标是开发一种新的核惩罚回归方法,用于分析来自无偏剖面研究的数据。它提供了一个系统的框架,用于从 通过一个核心来识别未命名的光谱,该核心突出了样品之间的相似性和差异,从而增强了来自命名代谢物的信号。这导致识别与感兴趣的表型相关的命名代谢物的能力提高,以及预测准确性提高。还提出了这种基于内核的框架的扩展,以允许系统整合来自不同分析研究的代谢组学数据,例如有针对性和无偏见的MS分析技术。第二个目标为核惩罚回归提供了一个正式的推理框架,从而补充了第一个目标的发现阶段。第三个目标侧重于代谢途径富集分析,该分析测试给定途径中稳态代谢物活性的协调变化以及代谢反应机制的畸变。该项目的第四个目标是提供一个统一的艾德框架,用于基于网络的静态(基于质谱)和动态(基于代谢组学)代谢组学测量的综合分析,从而提供代谢组和代谢组的综合视图。最后,最后一个目标是利用R语言、Cytoscape平台和Galaxy工作流系统的功能,在易于使用的开源软件中实现所提出的方法,从而为代谢组学领域的进一步发展提供可扩展的平台。拟议的软件工具还将提供数据存储库和协调中心(DRCC)数据集的插件,在那里,NIH共同基金代谢组学计划存款支持的所有区域代谢组学中心都收集了数据。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Black-box tests for algorithmic stability.
算法稳定性的黑盒测试。
Likelihood Inference for Large Scale Stochastic Blockmodels with Covariates based on a Divide-and-Conquer Parallelizable Algorithm with Communication.
基于分而治之的可并行通信算法的具有协变量的大规模随机块模型的似然推断。
High-Dimensional Posterior Consistency in Bayesian Vector Autoregressive Models
贝叶斯向量自回归模型中的高维后验一致性
The Convex Mixture Distribution: Granger Causality for Categorical Time Series
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ALI SHOJAIE其他文献

ALI SHOJAIE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ALI SHOJAIE', 18)}}的其他基金

Data Management and Statistical Core
数据管理与统计核心
  • 批准号:
    10433868
  • 财政年份:
    2020
  • 资助金额:
    $ 33.69万
  • 项目类别:
Novel Statistical Inference for Biomedical Big Data
生物医学大数据的新颖统计推断
  • 批准号:
    10701041
  • 财政年份:
    2020
  • 资助金额:
    $ 33.69万
  • 项目类别:
Data Management and Statistical Core
数据管理与统计核心
  • 批准号:
    10661531
  • 财政年份:
    2020
  • 资助金额:
    $ 33.69万
  • 项目类别:
Novel Statistical Inference for Biomedical Big Data
生物医学大数据的新颖统计推断
  • 批准号:
    10252023
  • 财政年份:
    2020
  • 资助金额:
    $ 33.69万
  • 项目类别:
17th IMS New Researchers Conference
第十七届IMS新研究员大会
  • 批准号:
    8986570
  • 财政年份:
    2015
  • 资助金额:
    $ 33.69万
  • 项目类别:
Statistical Methods for Network-Based Integrative Analysis of CVD Epigenetic Data
基于网络的 CVD 表观遗传数据综合分析统计方法
  • 批准号:
    9032704
  • 财政年份:
    2015
  • 资助金额:
    $ 33.69万
  • 项目类别:
Summer Institute for Statistics of Big Data
大数据统计暑期学院
  • 批准号:
    8935790
  • 财政年份:
    2014
  • 资助金额:
    $ 33.69万
  • 项目类别:
Summer Institute for Statistics of Big Data
大数据统计暑期学院
  • 批准号:
    8829422
  • 财政年份:
    2014
  • 资助金额:
    $ 33.69万
  • 项目类别:

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 33.69万
  • 项目类别:
    Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 33.69万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 33.69万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 33.69万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 33.69万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 33.69万
  • 项目类别:
    EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 33.69万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 33.69万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 33.69万
  • 项目类别:
    Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 33.69万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了