New approaches for better protein voltage sensors

更好的蛋白质电压传感器的新方法

基本信息

  • 批准号:
    9231604
  • 负责人:
  • 金额:
    $ 72.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-30 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

This proposal aims to develop better tools for analyzing brain cells and circuits and for large-scale recordings of brain activity. The currently available tools are relatively primitive in terms of sensitivity and speed. One major function of a neuron is to process electrical signals. Thus a tool that is of particular significance is high speed membrane potential imaging. Genetically encoded fluorescent protein voltage indicators (GEVI's) are a obvious strategic approach for “visualizing the brain in action”. Genetically encoded sensors are especially interesting to neuroscientists because, as proteins, they can be expressed in individual cell types in the mammalian brain. Because each brain region has up to 100 different cell types, sensor expression in a specific cell type is essential for imaging the activity of that cell type. Recently, there has been a dramatic improvement in the signal size of GEVIs (i.e. ArcLight, 40%/100 mv) but ArcLight has a relatively slow response time constant (τ=10 msec). There are now several faster GEVIs (τ=0.3 to 2.0 msec) but they have smaller signal sizes (~10%/100mv). One goal of this proposal is developing a GEVI with both large and fast responses to membrane potential changes. Several probe characteristics other than size and speed are also critically important. One is the wavelength range of excitation and emission. At present many sensors and activators are based on GFP and its analogues. Thus, probes with red excitation and emission spectra would allow simultaneous dual function measurements. One aim is to develop useful red GEVIs. Second, many GEVIs have a sigmoidal fluorescence-voltage relationship. The position of this relationship along the voltage axis can be adjusted via mutations in the voltage sensitive domain of the GEVI. Thus GEVIs can be selective reporters of different ranges of the neuron membrane potential and thereby selective for action potential activity versus subthreshold activity. This selectivity depends on both the voltage at half-maximal activation as well as the steepness of the sigmoidal curve. Lastly, it will be important to target the GEVIs to specific regions of the neuron including cell body, dendritic post-synaptic zones, and presynaptic terminals. All of the probes in the proposal are based on the voltage sensitive domain of a membrane protein (a phosphatase from Ciona or zebrafish) with one or two fluorescent proteins inserted into the N- or C-terminal region. The development of improved GEVIs will involve molecular biology for generating novel probes (bigger, faster, red, targeted anatomically and physiologically) followed by testing in cultured HEK293 cells, acutely dissociated neurons, and zebrafish embryos. Probes that function well in these initial screens will then be incorporated into virus particles for in vivo transfection and measurements in the mammalian brain. Improved and selective GEVIs would be useful to the community carrying out optical measurements of brain activity.
这项提议旨在开发更好的工具来分析大脑细胞和电路,并用于

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

LAWRENCE B COHEN其他文献

LAWRENCE B COHEN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('LAWRENCE B COHEN', 18)}}的其他基金

New approaches for better protein voltage sensors
更好的蛋白质电压传感器的新方法
  • 批准号:
    9358357
  • 财政年份:
    2016
  • 资助金额:
    $ 72.67万
  • 项目类别:
Scan of Protein Space for Optical Voltage Probes
光学电压探针的蛋白质空间扫描
  • 批准号:
    8337047
  • 财政年份:
    2007
  • 资助金额:
    $ 72.67万
  • 项目类别:
Scan of Protein Space for Optical Voltage Probes
光学电压探针的蛋白质空间扫描
  • 批准号:
    7492061
  • 财政年份:
    2007
  • 资助金额:
    $ 72.67万
  • 项目类别:
Scan of Protein Space for Optical Voltage Probes
光学电压探针的蛋白质空间扫描
  • 批准号:
    7912355
  • 财政年份:
    2007
  • 资助金额:
    $ 72.67万
  • 项目类别:
Scan of Protein Space for Optical Voltage Probes
光学电压探针的蛋白质空间扫描
  • 批准号:
    7926907
  • 财政年份:
    2007
  • 资助金额:
    $ 72.67万
  • 项目类别:
Scan of Protein Space for Optical Voltage Probes
光学电压探针的蛋白质空间扫描
  • 批准号:
    7317193
  • 财政年份:
    2007
  • 资助金额:
    $ 72.67万
  • 项目类别:
Scan of Protein Space for Optical Voltage Probes
光学电压探针的蛋白质空间扫描
  • 批准号:
    8133686
  • 财政年份:
    2007
  • 资助金额:
    $ 72.67万
  • 项目类别:
Scan of Protein Space for Optical Voltage Probes
光学电压探针的蛋白质空间扫描
  • 批准号:
    7683164
  • 财政年份:
    2007
  • 资助金额:
    $ 72.67万
  • 项目类别:
OPTICAL RECORDING OF SYNAPTIC POTENTIAL INTEGRATION
突触电位整合的光学记录
  • 批准号:
    3414957
  • 财政年份:
    1990
  • 资助金额:
    $ 72.67万
  • 项目类别:
OPTICAL RECORDING OF SYNAPTIC POTENTIAL INTEGRATION
突触电位整合的光学记录
  • 批准号:
    3414956
  • 财政年份:
    1990
  • 资助金额:
    $ 72.67万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 72.67万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 72.67万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 72.67万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 72.67万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 72.67万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 72.67万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 72.67万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 72.67万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 72.67万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 72.67万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了