3-D printed hyperelastic bone composites for bone regeneration and spine fusion
用于骨再生和脊柱融合的 3D 打印超弹性骨复合材料
基本信息
- 批准号:9084315
- 负责人:
- 金额:$ 31.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-01 至 2020-02-29
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAddressAdverse effectsArchitectureArthrodesisBehaviorBiologicalBiomechanicsBone MatrixBone RegenerationBone TransplantationCeramicsClinicalComplexDropsEvaluationFDA approvedFormulationGeometryGoalsGoldGrowthHydroxyapatitesImmune responseIndividualInflammatoryInkInvestigationMarketingMechanicsMesenchymal Stem CellsMethodsModelingMorbidity - disease rateOrthopedicsOsteogenesisPathologyPatientsPharmaceutical PreparationsPorosityPre-Clinical ModelPrintingProceduresProcessPropertyRattusResearchSafetySpinalSpinal FusionSpine surgeryStimulusSurfaceSurgeonTechniquesTechnologyTemperatureTranslatingVariantVascularizationVertebral columnWorkbasebioactive ceramicbonebone healingclinical careclinical practicecomparativecost effectivedesignflexibilityimprovedindividual patientminimally invasivenew technologynovelosteogenicparticlepre-clinicalpublic health relevancerecombinant human bone morphogenetic protein-2regenerativescaffoldtechnology developmenttranslational study
项目摘要
DESCRIPTION (provided by applicant): The goal of this research is to transform clinical care for patients with degenerative and traumatic bone pathologies. Despite recent advances in bone graft technology, a major void remains for orthopaedic surgeons who perform procedures that require bone healing. Current biologics on the market, such as recombinant human bone morphogenetic protein-2 (rhBMP-2; INFUSE(tm)), are effective but are associated with adverse effects. Ceramics and demineralized bone matrices (DBM) are insufficiently effective as bone graft substitutes for spine fusion. Our goal is to develop an exogenous growth factor-free ceramic composite scaffold that is safe, easy to manipulate, and more effective at inducing bone formation and spine fusion than currently available products. To this end, our group has developed a unique 3D-printable hydroxyapatite (HA) ink that can be used to create a robust composite scaffold that not only promotes bone regeneration, but also has hyperelastic mechanical properties that improves functionality and delivery in both open and minimally invasive spine fusion procedures. This 3D-printed technology is easily scalable and facilitates incorporation of other bioactive factors or drugs, since ink synthesis, 3D-printing, and processing are carried out at ambient temperatures. In preliminary work, we developed a strategy to 3D-print a variation on this hyperelastic HA (hHA) that incorporates demineralized bone matrix (DBM) particles into the 3D-ink, which imparts an added osteoinductive stimulus from the native bioactive growth factors present within the DBM. The result is a flexible and elastic hHA-DBM composite that we believe is the basis for a highly effective bone graft substitute for both open and minimally invasive spine fusion procedures. With this proposal, we will 1) develop the optimal 3D-ink formulation and printing parameters for bone regeneration and evaluate the capacity of this hyperelastic bone composite (HBC) to elicit spine fusion in a rat spine fusion model; 2) compare its efficacy (bone regenerative and spine fusion capacities) with an established positive control (rhBMP-2; INFUSE(tm)); and 3) compare the mechanisms of pro-osteogenic action and inflammatory host response of the hyperelastic bone composite with that of rhBMP-2. We hypothesize that the resulting HBC will elicit comparable fusion rates and regenerative capacity to rhBMP-2, but will provoke a significantly lower inflammatory host response. This translational study aims to develop a technology that could modernize clinical care approaches, while advancing our understanding of the behavior and functionality of complex 3D-printed particle-based composites. Not only would this investigation lay the groundwork for a safe, efficacious, and cost-effective therapy for spinal arthrodesis, but the versatility of design and rapid rate of manufacturing would also allow for efficient customizabilit to individual patients. We expect that full development of this technology would transform clinical practice for patients with degenerative and traumatic conditions of the spine, and would ultimately translate to other orthopaedic and non-orthopaedic settings where bone regeneration is required.
描述(由申请人提供):本研究的目标是改变退行性和创伤性骨病变患者的临床护理。尽管骨移植技术最近取得了进展,但对于执行需要骨愈合的手术的整形外科医生来说,仍然存在一个主要的空白。目前市场上的生物制剂,如重组人骨形态发生蛋白-2(rhBMP-2; INFUSE(TM)),是有效的,但与副作用有关。陶瓷和脱矿骨基质(DBM)作为脊柱融合术的骨移植替代品不够有效。我们的目标是开发一种不含外源性生长因子的陶瓷复合支架,该支架安全、易于操作,并且比现有产品更有效地诱导骨形成和脊柱融合。为此,我们的团队开发了一种独特的3D打印羟基磷灰石(HA)墨水,可用于创建坚固的复合支架,不仅促进骨再生,而且具有超弹性机械特性,可改善开放和微创脊柱融合手术的功能和输送。这种3D打印技术很容易扩展,并有助于掺入其他生物活性因子或药物,因为墨水合成,3D打印和加工是在环境温度下进行的。在初步工作中,我们开发了一种策略,在这种超弹性HA(hHA)上3D打印一种变体,将脱矿骨基质(DBM)颗粒掺入3D墨水中,从而从DBM中存在的天然生物活性生长因子中提供额外的骨诱导刺激。其结果是一种灵活而有弹性的hHA-DBM复合材料,我们认为这是开放式和微创脊柱融合手术的高效骨移植替代品的基础。根据这一提议,我们将1)开发用于骨再生的最佳3D墨水配方和打印参数,并评估这种超弹性骨复合材料(HBC)在大鼠脊柱融合模型中引起脊柱融合的能力; 2)比较其功效(骨再生和脊柱融合能力)与确定的阳性对照(rhBMP-2; INFUSE(tm));和3)比较超弹性骨复合物与rhBMP-2的促成骨作用和炎症宿主反应的机制。我们假设,所得的HBC将引起与rhBMP-2相当的融合率和再生能力,但将引起显著较低的炎症宿主反应。这项转化研究旨在开发一种技术,使临床护理方法现代化,同时推进我们对复杂3D打印颗粒复合材料的行为和功能的理解。这项研究不仅为脊柱关节固定术的安全、有效和经济有效的治疗奠定了基础,而且设计的多功能性和制造的快速速度也将允许为个体患者提供有效的定制化。我们预计,这项技术的全面发展将改变脊柱退行性和创伤性疾病患者的临床实践,并最终转化为需要骨再生的其他骨科和非骨科环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erin L. HSU其他文献
Erin L. HSU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erin L. HSU', 18)}}的其他基金
3-D Printed Hyperelastic Bone Composites for Bone Regeneration and Spine Fusion
用于骨再生和脊柱融合的 3D 打印超弹性骨复合材料
- 批准号:
9240597 - 财政年份:2016
- 资助金额:
$ 31.68万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 31.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 31.68万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 31.68万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 31.68万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 31.68万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 31.68万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 31.68万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 31.68万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 31.68万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 31.68万 - 项目类别:
Standard Grant