3-D Printed Hyperelastic Bone Composites for Bone Regeneration and Spine Fusion
用于骨再生和脊柱融合的 3D 打印超弹性骨复合材料
基本信息
- 批准号:9240597
- 负责人:
- 金额:$ 33.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-01 至 2020-02-29
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAddressAdverse effectsArchitectureArthrodesisBehaviorBiologicalBiomechanicsBone MatrixBone RegenerationBone TransplantationCeramicsClinicalComplexDropsEvaluationFDA approvedFormulationGeometryGoalsGoldGrowth FactorHydroxyapatitesImmune responseIndividualInflammatoryInkInvestigationMesenchymal Stem CellsMethodsModelingModernizationMorbidity - disease rateOperative Surgical ProceduresOrthopedicsOsteogenesisPathologyPatient CarePatientsPharmaceutical PreparationsPorosityPre-Clinical ModelPrintingProceduresPropertyRattusResearchSafetySpinalSpinal FusionSpine surgeryStimulusSurfaceSurgeonTechniquesTechnologyTemperatureTranslatingVariantVascularizationVertebral columnWorkbasebioactive ceramicbonebone healingclinical careclinical practicecomparativecost effectivedemineralizationdesigneffective therapyflexibilityimproved functioningindividual patientmechanical propertiesminimally invasivenew technologynovelosteogenicparticlephysical propertypre-clinicalpublic health relevancerecombinant human bone morphogenetic protein-2regenerativescaffoldtechnology developmenttranslational study
项目摘要
DESCRIPTION (provided by applicant): The goal of this research is to transform clinical care for patients with degenerative and traumatic bone pathologies. Despite recent advances in bone graft technology, a major void remains for orthopaedic surgeons who perform procedures that require bone healing. Current biologics on the market, such as recombinant human bone morphogenetic protein-2 (rhBMP-2; INFUSE(tm)), are effective but are associated with adverse effects. Ceramics and demineralized bone matrices (DBM) are insufficiently effective as bone graft substitutes for spine fusion. Our goal is to develop an exogenous growth factor-free ceramic composite scaffold that is safe, easy to manipulate, and more effective at inducing bone formation and spine fusion than currently available products. To this end, our group has developed a unique 3D-printable hydroxyapatite (HA) ink that can be used to create a robust composite scaffold that not only promotes bone regeneration, but also has hyperelastic mechanical properties that improves functionality and delivery in both open and minimally invasive spine fusion procedures. This 3D-printed technology is easily scalable and facilitates incorporation of other bioactive factors or drugs, since ink synthesis, 3D-printing, and processing are carried out at ambient temperatures. In preliminary work, we developed a strategy to 3D-print a variation on this hyperelastic HA (hHA) that incorporates demineralized bone matrix (DBM) particles into the 3D-ink, which imparts an added osteoinductive stimulus from the native bioactive growth factors present within the DBM. The result is a flexible and elastic hHA-DBM composite that we believe is the basis for a highly effective bone graft substitute for both open and minimally invasive spine fusion procedures. With this proposal, we will 1) develop the optimal 3D-ink formulation and printing parameters for bone regeneration and evaluate the capacity of this hyperelastic bone composite (HBC) to elicit spine fusion in a rat spine fusion model; 2) compare its efficacy (bone regenerative and spine fusion capacities) with an established positive control (rhBMP-2; INFUSE(tm)); and 3) compare the mechanisms of pro-osteogenic action and inflammatory host response of the hyperelastic bone composite with that of rhBMP-2. We hypothesize that the resulting HBC will elicit comparable fusion rates and regenerative capacity to rhBMP-2, but will provoke a significantly lower inflammatory host response. This translational study aims to develop a technology that could modernize clinical care approaches, while advancing our understanding of the behavior and functionality of complex 3D-printed particle-based composites. Not only would this investigation lay the groundwork for a safe, efficacious, and cost-effective therapy for spinal arthrodesis, but the versatility of design and rapid rate of manufacturing would also allow for efficient customizabilit to individual patients. We expect that full development of this technology would transform clinical practice for patients with degenerative and traumatic conditions of the spine, and would ultimately translate to other orthopaedic and non-orthopaedic settings where bone regeneration is required.
描述(由申请人提供):本研究的目标是改变退行性和创伤性骨病变患者的临床护理。尽管骨移植技术最近取得了进展,但对于执行需要骨愈合的手术的整形外科医生来说,仍然存在一个主要的空白。目前市场上的生物制剂,如重组人骨形态发生蛋白-2(rhBMP-2; INFUSE(TM)),是有效的,但与副作用有关。陶瓷和脱矿骨基质(DBM)作为脊柱融合术的骨移植替代品不够有效。我们的目标是开发一种不含外源性生长因子的陶瓷复合支架,该支架安全、易于操作,并且比现有产品更有效地诱导骨形成和脊柱融合。为此,我们的团队开发了一种独特的3D打印羟基磷灰石(HA)墨水,可用于创建坚固的复合支架,不仅促进骨再生,而且具有超弹性机械特性,可改善开放和微创脊柱融合手术的功能和输送。这种3D打印技术很容易扩展,并有助于掺入其他生物活性因子或药物,因为墨水合成,3D打印和加工是在环境温度下进行的。在初步工作中,我们开发了一种策略,在这种超弹性HA(hHA)上3D打印一种变体,将脱矿骨基质(DBM)颗粒掺入3D墨水中,从而从DBM中存在的天然生物活性生长因子中提供额外的骨诱导刺激。其结果是一种灵活而有弹性的hHA-DBM复合材料,我们认为这是开放式和微创脊柱融合手术的高效骨移植替代品的基础。根据这一提议,我们将1)开发用于骨再生的最佳3D墨水配方和打印参数,并评估这种超弹性骨复合材料(HBC)在大鼠脊柱融合模型中引起脊柱融合的能力; 2)比较其功效(骨再生和脊柱融合能力)与确定的阳性对照(rhBMP-2; INFUSE(tm));和3)比较超弹性骨复合物与rhBMP-2的促成骨作用和炎症宿主反应的机制。我们假设,所得的HBC将引起与rhBMP-2相当的融合率和再生能力,但将引起显著较低的炎症宿主反应。这项转化研究旨在开发一种技术,使临床护理方法现代化,同时推进我们对复杂3D打印颗粒复合材料的行为和功能的理解。这项研究不仅为脊柱关节固定术的安全、有效和经济有效的治疗奠定了基础,而且设计的多功能性和制造的快速速度也将允许为个体患者提供有效的定制化。我们预计,这项技术的全面发展将改变脊柱退行性和创伤性疾病患者的临床实践,并最终转化为需要骨再生的其他骨科和非骨科环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erin L. HSU其他文献
Erin L. HSU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erin L. HSU', 18)}}的其他基金
3-D printed hyperelastic bone composites for bone regeneration and spine fusion
用于骨再生和脊柱融合的 3D 打印超弹性骨复合材料
- 批准号:
9084315 - 财政年份:2016
- 资助金额:
$ 33.61万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 33.61万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 33.61万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 33.61万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 33.61万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 33.61万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 33.61万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 33.61万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 33.61万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 33.61万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 33.61万 - 项目类别:
Research Grant