Novel Approaches for Predicting Unstructured Short Periods of Physical Activities in Youth
预测青少年非结构化短期体育活动的新方法
基本信息
- 批准号:9030093
- 负责人:
- 金额:$ 54.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-06 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:18 year oldAccelerationAccelerometerAdultAlgorithmsBehaviorBiological Neural NetworksCardiovascular DiseasesChronic DiseaseClassificationCollectionDataData SetData SourcesDevelopmentDoseEnergy MetabolismEnvironmentHip region structureHome environmentHumanIndirect CalorimetryIndividualLifeLocationMachine LearningMeasurementMeasuresMethodsModelingMovementNational Health and Nutrition Examination SurveyNoiseOutcomePartner in relationshipPhysical activityPlayPreventionPublic HealthQuestionnairesResearchResearch PersonnelRoleSamplingSeriesSignal TransductionSiteSleepSource CodeSpecific qualifier valueStructureTechnologyTimeTrainingValidationWorkWristYouthafter-school programbasedata reductiondesignimprovedinnovationlearning strategymembermodel developmentnovelnovel strategiesobesity treatmentphysical conditioningpublic health relevanceresponsesedentary lifestylesuccesstime use
项目摘要
DESCRIPTION (provided by applicant): The use of accelerometers for the measurement of physical activity in youth has increased substantially over the last decade. Accelerometers are typically worn on the waist, however recently alternative placement sites such as the wrist have become more popular. For example, the National Health and Nutrition Examination Survey (NHANES) is currently using the wrist location for their accelerometer physical activity measurements. Currently there is a lack of information about best approaches for analyzing accelerometer data from the wrist location with the ActiGraph accelerometer. In addition, advances in accelerometer technology allow for utilization of the raw acceleration signal with machine learning algorithms, which have the capability to predict activities and improve the estimates of energy expenditure over previously used methods. Members of this research group have shown improved activity classification and energy expenditure prediction in youth using Bipart, versus commonly used approaches such as Artificial Neural Networks and Support Vector Machine. However, this preliminary work was based on accelerometer count data and structured lab activities with only a hip worn accelerometer. In addition, there are limitations to
applying lab based models to true free-living activity. For example, free-living activity is not performed in structured bouts rather it is performed in micro-bouts over the course of the day which is problematic for methods designed to look at a string of data over a specified time period. There is minimal work currently on how to first segment bouts of free-living activity before classifying activity type and predicting energy expenditure. This proposal will extend our previous work using more advanced methods to analyze raw acceleration data (80 Hz) using a single wrist or hip worn accelerometer. One hundred youth will be measured during a semi-structured simulated free-living period (development group) and 200 youth will be measured during true free-living activity during an after-school program and at home (validation group). Measurements will include indirect calorimetry for energy expenditure and direct observation for activity type. The specific aims of the study are to: 1) develop and validate machine learning algorithms to segment bouts of activity during free-living activity in youth using: A) a hip worn accelerometer or B) a wrist worn accelerometer, and 2) develop and validate machine learning algorithms to classify physical activity type and estimate energy expenditure in youth, during free-living activity using: A) a hip worn accelerometer or B) a wrist worn accelerometer. Results from these studies will have direct and immediate impact for physical activity researchers utilizing accelerometers as well as analysis of NHANES wrist accelerometer data by providing ac- curate and precise methods for bout segmentation, prediction of activity type and energy expenditure.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott E Crouter其他文献
Scott E Crouter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott E Crouter', 18)}}的其他基金
Use of accelerometer and gyroscope data to improve precision of estimates of physical activity type and energy expenditure in free-living adults
使用加速度计和陀螺仪数据来提高自由生活成年人身体活动类型和能量消耗的估计精度
- 批准号:
10444075 - 财政年份:2022
- 资助金额:
$ 54.22万 - 项目类别:
Use of accelerometer and gyroscope data to improve precision of estimates of physical activity type and energy expenditure in free-living adults
使用加速度计和陀螺仪数据来提高自由生活成年人身体活动类型和能量消耗的估计精度
- 批准号:
10617774 - 财政年份:2022
- 资助金额:
$ 54.22万 - 项目类别:
Novel Techniques for the Assessment of Physical Activity in Children
评估儿童身体活动的新技术
- 批准号:
7661581 - 财政年份:2009
- 资助金额:
$ 54.22万 - 项目类别:
Novel Techniques for the Assessment of Physical Activity in Children
评估儿童身体活动的新技术
- 批准号:
7869361 - 财政年份:2009
- 资助金额:
$ 54.22万 - 项目类别:
相似海外基金
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 54.22万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 54.22万 - 项目类别:
Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 54.22万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 54.22万 - 项目类别:
Continuing Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 54.22万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 54.22万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 54.22万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 54.22万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 54.22万 - 项目类别:
Standard Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
- 批准号:
23H01186 - 财政年份:2023
- 资助金额:
$ 54.22万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




