Use of accelerometer and gyroscope data to improve precision of estimates of physical activity type and energy expenditure in free-living adults
使用加速度计和陀螺仪数据来提高自由生活成年人身体活动类型和能量消耗的估计精度
基本信息
- 批准号:10617774
- 负责人:
- 金额:$ 64.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-15 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAccelerometerAdultAlgorithmsAnkleBehavioral trialCalorimetryClassificationClinical TrialsCollectionComplementDataData SetDevelopmentDevicesDoseEnergy MetabolismFutureHealthHip region structureHumanIndirect CalorimetryIndividualLightLinear RegressionsLocationMeasuresMethodsModelingModerate ActivityModerate ExerciseMonitorMotionMovementOutcomeParticipantPatternPerformancePhysical activityPhysical assessmentPublic HealthResearchSamplingSource CodeStructureTechniquesTechnologyTestingTimeTrainingWorkWristactigraphydata repositorydoubly-labeled waterhealth recordimprovedmachine learning algorithmmachine learning modelmodel buildingmodel developmentoutcome predictionphysical conditioningportabilityresponsesedentarysedentary activitysedentary lifestylesensorsoftware repositorystandard measuretotal energy expenditurewearable devicewearable sensor technology
项目摘要
Project Summary/Abstract
Wearable devices are the primary method for objectively assessing physical activity (PA) type and energy ex-
penditure (EE) in free-living individuals. Current practice involves using only accelerometer-based devices, which
are generally better for predicting outcomes at the group level rather than the individual level. A ceiling effect
has been reached for accuracy and precision of accelerometer-derived predictions, and thus there is a critical
need for other approaches that can yield more accurate and precise methods to classify PA type and estimate
EE. A potential solution is to combine data from accelerometers with data from other sensors. Accelerometers
record linear acceleration, which captures a large amount of human movement. However, many daily activities
contain turning motions that are not captured by only using accelerometers. Gyroscopes record angular velocity,
and thus may be useful in combination with accelerometers for capturing a richer picture of human movement.
This can result in improved accuracy and precision when assessing PA type and EE. Using an ActiGraph GT9X
(worn on hip, wrists, or ankles), we have previously shown that combining accelerometer and gyroscope data
led to individual-level accuracy improvements of ~6%, compared to accelerometer only. Importantly, this in-
cluded up to 30% improvement for classifying sedentary activities. In addition, classification accuracy between
sedentary and non-sedentary behaviors when using only the accelerometer, ranged from 76.7-96.7% across
wear locations, whereas the gyroscope correctly classified 100% of the time at all wear locations. The overall
objective of this R01 application is to use gold standard measures of EE (doubly-labeled water, room calorimetry
and portable indirect calorimetry) and activity classification (video direct observation) to develop and refine ma-
chine learning algorithms using both accelerometer and gyroscope sensor data. The specific aims of the study
are: 1) Develop and validate gyroscope-inclusive machine learning models that classify PA type and estimate
EE in adults, using a 24-hr stay in a room indirect calorimetry (n=50) and 2-hr of semi-structured activities with
portable calorimetry (n=50); 2a) Assess free-living performance of the models, and 2b) Re-train and refine the
models using free-living data with ground truth from direct observation and portable indirect calorimetry (n = 100
participants during 12 hrs of free-living activity); and 3) Assess validity of EE models during a prolonged free-
living period using the doubly-labeled water technique (n=100). The central hypothesis is that the gyroscope will
provide meaningful and discriminative information on rotational movements that occur during human movement,
thereby complementing the accelerometer data. Combining accelerometer and gyroscope sensor data will im-
prove accuracy and precision for classifying PA type and estimating EE compared to using either sensor alone,
and will have a significant impact on the ability to assess free-living PA in adults.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott E Crouter其他文献
Scott E Crouter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott E Crouter', 18)}}的其他基金
Use of accelerometer and gyroscope data to improve precision of estimates of physical activity type and energy expenditure in free-living adults
使用加速度计和陀螺仪数据来提高自由生活成年人身体活动类型和能量消耗的估计精度
- 批准号:
10444075 - 财政年份:2022
- 资助金额:
$ 64.08万 - 项目类别:
Novel Approaches for Predicting Unstructured Short Periods of Physical Activities in Youth
预测青少年非结构化短期体育活动的新方法
- 批准号:
9030093 - 财政年份:2016
- 资助金额:
$ 64.08万 - 项目类别:
Novel Techniques for the Assessment of Physical Activity in Children
评估儿童身体活动的新技术
- 批准号:
7661581 - 财政年份:2009
- 资助金额:
$ 64.08万 - 项目类别:
Novel Techniques for the Assessment of Physical Activity in Children
评估儿童身体活动的新技术
- 批准号:
7869361 - 财政年份:2009
- 资助金额:
$ 64.08万 - 项目类别:
相似海外基金
Establishing best practices for the use of accelerometer measured ambient light sensor data to assess children's outdoor time
建立使用加速度计测量的环境光传感器数据来评估儿童的户外时间的最佳实践
- 批准号:
10731315 - 财政年份:2023
- 资助金额:
$ 64.08万 - 项目类别:
Training of machine learning algorithms for the classification of accelerometer-measured bednet use and related behaviors associated with malaria risk
训练机器学习算法,用于对加速计测量的蚊帐使用和与疟疾风险相关的相关行为进行分类
- 批准号:
10727374 - 财政年份:2023
- 资助金额:
$ 64.08万 - 项目类别:
Development of environmentally robust and thermally stable Microelectromechanical Systems (MEMS) based accelerometer for automotive applications
开发适用于汽车应用的环境稳定且热稳定的微机电系统 (MEMS) 加速度计
- 批准号:
566730-2021 - 财政年份:2022
- 资助金额:
$ 64.08万 - 项目类别:
Alliance Grants
Use of accelerometer and gyroscope data to improve precision of estimates of physical activity type and energy expenditure in free-living adults
使用加速度计和陀螺仪数据来提高自由生活成年人身体活动类型和能量消耗的估计精度
- 批准号:
10444075 - 财政年份:2022
- 资助金额:
$ 64.08万 - 项目类别:
Exploration of novel pathophysiology of chemotherapy-induced peripheral neuropathy utilizing quantitative sensory testing and accelerometer
利用定量感觉测试和加速度计探索化疗引起的周围神经病变的新病理生理学
- 批准号:
22K17623 - 财政年份:2022
- 资助金额:
$ 64.08万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Investigating the validity and reliability of accelerometer-based measures of physical activity and sedentary time in toddlers (iPLAY)
研究基于加速度计的幼儿体力活动和久坐时间测量的有效性和可靠性 (iPLAY)
- 批准号:
475451 - 财政年份:2022
- 资助金额:
$ 64.08万 - 项目类别:
Studentship Programs
Investigating the reliability of accelerometer-based measures of physical activity and sedentary time in toddlers
研究基于加速度计的幼儿体力活动和久坐时间测量的可靠性
- 批准号:
466914 - 财政年份:2021
- 资助金额:
$ 64.08万 - 项目类别:
Studentship Programs
Doctoral Dissertation Research: Leveraging Intensive Time Series of Accelerometer Data to Assess Impulsivity and Inattention in Preschool Children
博士论文研究:利用加速计数据的密集时间序列来评估学龄前儿童的冲动和注意力不集中
- 批准号:
2120223 - 财政年份:2021
- 资助金额:
$ 64.08万 - 项目类别:
Standard Grant
Development of a rotation-invariant accelerometer for human activity recognition
开发用于人类活动识别的旋转不变加速度计
- 批准号:
21K19804 - 财政年份:2021
- 资助金额:
$ 64.08万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Novel machine learning and missing data methods for improving estimates of physical activity, sedentary behavior and sleep using accelerometer data
新颖的机器学习和缺失数据方法,可使用加速度计数据改进对身体活动、久坐行为和睡眠的估计
- 批准号:
10400835 - 财政年份:2021
- 资助金额:
$ 64.08万 - 项目类别: