An Instantaneous Ultrasonic Personal Blood Pressure Monitor
即时超声波个人血压计
基本信息
- 批准号:8936260
- 负责人:
- 金额:$ 42.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-30 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAlgorithmsAmbulatory MonitoringAppleArteriesBasic ScienceBloodBlood PressureBlood Pressure MonitorsBlood VesselsCalibrationClinicalClinical ResearchComplexCouplesDataData CollectionDevicesDiagnosisEffectivenessElectronic Health RecordEpidemiologic StudiesEpidemiologyFeedbackFinancial compensationFingersGenerationsHealthHeartHumanHypertensionImageIncentivesIndiaIndividualLegal patentLiquid substanceLogicMeasurementMeasuresMedicalMethodsMicroscopicModelingMonitorOutcomePatientsPatternPharmaceutical PreparationsPhysiologic pulsePhysiologicalPopulationPositioning AttributePublic HealthPulse PressureRadialRadiationRelative (related person)ReportingResearchResourcesSelf ManagementSkinSpeedSystemTechniquesTechnologyTimeTouch sensationTrainingTransducersTranslatingTranslational ResearchUltrasonic TherapyUltrasonic TransducerUltrasonicsUltrasonographyUnited States Dept. of Health and Human ServicesUnited States National Institutes of HealthWristacoustic imagingarmbaseclinical practicecostdesignhigh throughput screeningimaging modalityimprovedinnovationinstrumentmeetingsnon-compliancenovelnovel strategiespopulation healthpressureprototypepublic health relevanceresearch clinical testingresearch studyresponsescreeningsensortemporal measurementtooluser-friendly
项目摘要
DESCRIPTION (provided by applicant): Blood pressure (BP) is a critical vital sign for health, including hypertension. Clinical practice, however, is largely limited to awkward, inconvenient arm cuffs that provide only point-in-time measurement. High- throughput screening as well as personal health monitoring would benefit from a simple BP monitor that obtains accurate measurements with no training-ideally in seconds rather than minutes-and includes electronic health record (EHR) integration to minimize patient reporting error and noncompliance. The overall objective of this project is to use ultrasound, and in particular, Acoustic Radiation Force Impulse (ARFI) techniques, to develop an easy-to-use, cuffless, noninvasive, ultrasonic BP monitor, consisting of a compact sensor pad and readout. Placement of the pad in contact with the skin over an artery will immediately provide self-calibrated, accurate BP. The operating principle is analogous to a conventional arm cuff, which relies on acoustically observing arterial wall deflection in response to the differential between internal arterial pressure and an externally applied cuff pressure; however, this project will instead use ultrasound energy to impose highly localized but safe ARFI pressure pulses on an arterial wall and measure the microscopic deflection that results from the pressure differential. Furthermore, the high speed of ultrasound will allow blood pressure to be conveniently assessed in just a few seconds. The first Aim will demonstrate the ultrasonic pressure measurement method, on a commercial ultrasound testbed, by: developing algorithms to noninvasively track the pulsatile waveform using measured displacements in response to ARFI pulses; calibrating the pressure strength of the ARFI pulses; and reporting the absolute systolic and diastolic equivalent pressures for fluid- and blood-filled arterial phantoms, finishing with human clinical evaluation o the method according to the IEEE 1708-2014 Standard for cuffless blood pressure devices. The second Aim will seek to replace the piezoelectric testbed transducer with a low-cost capacitive micromachined ultrasonic transducer (which is well-suited to affordable personal health monitoring applications), likewise ending with clinical evaluation according to the IEEE standard. The final Aim will translate the testbed into a prototype instrument with a specifically-designed readout unit, incorporate an EHR interface, and culminate with a clinical study to evaluate the complete health monitor system in a low-resource context. This project is particularly relevant to the Department of Health & Human Services' "Million Hearts' Initiative", potentially touching a number of facets in the Million Hearts Logic Model by: improving measurement and reporting for large-scale epidemiological studies; increasing management effectiveness for ongoing hypertension medication; reducing hassle and barriers to use; and supporting further ambulatory research, both in the US and India.
描述(由申请人提供):血压(BP)是健康的关键生命体征,包括高血压。然而,临床实践在很大程度上仅限于笨拙、不方便的臂袖,仅提供时间点测量。高通量筛查以及个人健康监测将受益于简单的BP监测器,其无需培训即可获得准确的测量结果-理想情况下在几秒钟而不是几分钟内-并且包括电子健康记录(EHR)集成,以最大限度地减少患者报告错误和不依从性。 该项目的总体目标是使用超声,特别是声辐射力脉冲(ARFI)技术,开发一种易于使用的,无袖带,非侵入性,超声BP监测仪,包括一个紧凑的传感器垫和读出。将衬垫放置在动脉上与皮肤接触将立即提供自校准的准确BP。其工作原理类似于传统臂袖带,其依赖于声学观察动脉壁偏转以响应内部动脉压和外部施加的袖带压力之间的差异;然而,该项目将使用超声能量在动脉壁上施加高度局部化但安全的ARFI压力脉冲,并测量由压差引起的微观偏转。此外,超声波的高速将允许在几秒钟内方便地评估血压。 第一个目标将在商业超声试验台上演示超声压力测量方法,通过:开发算法,使用响应于ARFI脉冲的测量位移非侵入性地跟踪脉动波形;校准ARFI脉冲的压力强度;并报告充满流体和血液的动脉体模的绝对收缩和舒张等效压力,根据IEEE 1708-2014标准对无袖带血压装置的方法进行人体临床评价。第二个目标将寻求用低成本的电容式微机械超声换能器(非常适合负担得起的个人健康监测应用)取代压电测试台换能器,同样根据IEEE标准进行临床评估。最终的目标将把测试平台转化为一个具有专门设计的读出单元的原型仪器,包括一个EHR接口,并最终进行临床研究,以评估在低资源环境下的完整健康监测系统。 该项目与卫生与公众服务部的“百万心脏计划”特别相关,可能涉及百万心脏逻辑模型的许多方面:改善大规模流行病学研究的测量和报告;提高正在进行的高血压药物治疗的管理有效性;减少使用的麻烦和障碍;并支持美国和印度的进一步流动研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Frederick Lemmerhirt其他文献
David Frederick Lemmerhirt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Frederick Lemmerhirt', 18)}}的其他基金
A Neonatal Cerebral Blood Flow Monitor based on MEMS Ultrasound
基于MEMS超声的新生儿脑血流监测仪
- 批准号:
8145972 - 财政年份:2011
- 资助金额:
$ 42.16万 - 项目类别:
A Neonatal Cerebral Blood Flow Monitor based on MEMS Ultrasound
基于MEMS超声的新生儿脑血流监测仪
- 批准号:
8333910 - 财政年份:2011
- 资助金额:
$ 42.16万 - 项目类别:
A Commercially-Viable MEMS-based Ultrasonic Volume Flow Sensor
一种商业化的基于 MEMS 的超声波体积流量传感器
- 批准号:
8058361 - 财政年份:2010
- 资助金额:
$ 42.16万 - 项目类别:
Commercially Viable Wide-Band Ultrasound Arrays Based on CMUT Technology
基于 CMUT 技术的商业化宽带超声阵列
- 批准号:
7746929 - 财政年份:2009
- 资助金额:
$ 42.16万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 42.16万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 42.16万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 42.16万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 42.16万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 42.16万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 42.16万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 42.16万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 42.16万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 42.16万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 42.16万 - 项目类别:
Continuing Grant