Bayesian estimation of network connectivity and motifs
网络连接性和主题的贝叶斯估计
基本信息
- 批准号:9170679
- 负责人:
- 金额:$ 39.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-27 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAlgorithmsBRAIN initiativeBayesian AnalysisBehaviorBiologicalBiological Neural NetworksCalciumCatalogingCatalogsCellsCommunitiesComplexDataDatabasesDetectionDevelopmentDiseaseEngineeringFormulationGoalsGraphHealthImageIn VitroIndividualInvestigationKnowledgeLearningLightMeasuresMethodsMicroscopyMusNatureNetwork-basedNeuronsNeurosciencesNoiseOpsinPatternPopulationProbabilityPublic HealthPublishingResearchResourcesScienceSoftware ToolsStatistical ModelsSynapsesSystemTechniquesTestingTimeValidationWorkabstractinganalytical toolarea V1area striatacell typehippocampal pyramidal neuronimprovedin vivoinnovative technologiesnetwork modelsneural circuitnoveloptogeneticsrelating to nervous systemresponsesignal processingsocialtooltwo-photon
项目摘要
Abstract
The overarching goal of this proposal is to learn how large groups of neurons interact in a network to perform
computations that go beyond the individual ability of each cell. Our working hypothesis is that emergent
behavior in neural networks results from their organization into a hierarchy of modular sub-networks or motifs,
each performing simpler computations than the network as a whole. This theoretical framework suggests that
our understanding of neural networks will advance if we can reliably measure network connectivity, detect
recurring motifs, elucidate the computations they perform, and reveal how these smaller modules are
combined into larger networks capable of performing increasingly complex computations. To advance the field
forward we will: (a) develop novel system identification methods for cortical networks based on dynamical, two-
photon imaging data. Our methods will use a Bayesian formulation that incorporates prior constraints on
network topology, sparsity of synaptic connections, and cell type, derived from published, experimental data;
(b) advance graph theoretic methods to identify patterns of connectivity among subsets of neurons which
appear at rates higher than chance; (c) will use extensive in-vivo and in-vitro methods to validate our
techniques. The work will deliver transformative software tools for Bayesian inference of network connectivity
from functional data; it will yield a catalog of elementary cortical motifs of excitatory and inhibitory cells that will
shed light on the wiring of the cortical circuitry; and it will generate the first database combining functional
calcium imaging data with “ground truth” estimates of direct synaptic connectivity. Altogether, the proposed
work will make available much needed analytical tools and databases to support a wide range of studies under
the BRAIN initiative.
摘要
这项提议的首要目标是了解大群神经元如何在网络中相互作用,
超越每个细胞的能力的计算。我们的工作假设是
神经网络中的行为源于它们被组织成模块化子网络或基元的层次结构,
每个节点执行比整个网络更简单的计算。这一理论框架表明,
如果我们能够可靠地测量网络的连通性,
重复出现的图案,阐明了它们执行的计算,并揭示了这些较小的模块是如何
组合成能够执行越来越复杂的计算的更大的网络。来推进这个领域
未来我们将:(a)开发新的系统识别方法的皮质网络的基础上动态,两个-
光子成像数据。我们的方法将使用贝叶斯公式,该公式包含以下先验约束:
网络拓扑结构,突触连接的稀疏性,和细胞类型,来自公开的实验数据;
(b)先进的图论方法来识别神经元子集之间的连接模式,
出现率高于机会;(c)将使用广泛的体内和体外方法来验证我们的
技术.这项工作将提供变革性的软件工具,用于网络连接的贝叶斯推理
从功能数据;它将产生一个兴奋性和抑制性细胞的基本皮质基序目录,
揭示了皮层电路的布线;它将产生第一个数据库,
钙成像数据与直接突触连接的“基本事实”估计。总的来说,
工作将提供急需的分析工具和数据库,以支持根据
大脑倡议。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DARIO L RINGACH其他文献
DARIO L RINGACH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DARIO L RINGACH', 18)}}的其他基金
Quantitative Studies of Cortical Visual Processing
皮层视觉处理的定量研究
- 批准号:
6820027 - 财政年份:2000
- 资助金额:
$ 39.56万 - 项目类别:
QUANTITATIVE STUDIES OF CORTICAL VISUAL PROCESSING
皮质视觉处理的定量研究
- 批准号:
6498346 - 财政年份:2000
- 资助金额:
$ 39.56万 - 项目类别:
Quantitative Studies of Cortical Visual Processing
皮层视觉处理的定量研究
- 批准号:
7582240 - 财政年份:2000
- 资助金额:
$ 39.56万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 39.56万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 39.56万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 39.56万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 39.56万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 39.56万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 39.56万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 39.56万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 39.56万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 39.56万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 39.56万 - 项目类别:
Research Grant