The role of histone chaperone Asf1 in Alternative Lengthening of Telomeres
组蛋白伴侣 Asf1 在端粒选择性延长中的作用
基本信息
- 批准号:9243225
- 负责人:
- 金额:$ 40.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-04-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:ASF1A geneAddressAffinityAntibodiesBiological AssayCell LineCell NucleusCell divisionCellsCharacteristicsChromatinChromosomesComplexDNADNA DamageDNA PackagingDataDefectDependenceDiagnosticDown-RegulationElectrophoresisEpigenetic ProcessEventExhibitsGene MutationGenetic RecombinationGenome StabilityGoalsHeterochromatinHeterogeneityHistone AcetylationHistonesInterphaseLengthLinkLongevityMaintenanceMalignant NeoplasmsMetabolismMetaphaseMicrococcal NucleaseMolecularMolecular ChaperonesNucleosomesPathway interactionsPhenotypeProtein IsoformsRNA-Directed DNA PolymeraseRepetitive SequenceRoleSignal TransductionSister Chromatid ExchangeStructureTelomeraseTelomerase inhibitionTelomere Length MaintenanceTelomere MaintenanceTelomere PathwayTelomere ShorteningTestingbasecancer cellcancer therapycell transformationchromatin immunoprecipitationdesignexperimental studygel electrophoresishistone methylationhistone modificationneoplastic cellnovelpublic health relevanceresponsesmall hairpin RNAtelomeretissue culturetooltumor
项目摘要
DESCRIPTION (provided by applicant): Telomeres are the natural ends of linear chromosomes and crucial for genome stability, cellular viability and chromosome integrity. Telomeres shorten during each cell division, representing a cellular clock and limiting the replicative lifespan. To overcome this limit, cancer cells have to activate telomere maintenance mechanisms, which counteract telomere shortening and endow the cells with immortality. Ninety percent of cancers do so by activating telomerase, a reverse transcriptase complex that adds telomeric repeats to chromosome ends. The remaining 10% of cancers take advantage of a recombination-based mechanism for telomere length maintenance, called ALT (Alternative Lengthening of Telomeres). While telomerase activation is the more frequently used mechanism and widely investigated, it is becoming clear that ALT pathways can be activated upon telomerase inhibition, emphasizing that both telomere maintenance mechanisms have to be understood before telomere elongation can be successfully targeted as cancer therapy. ALT-dependent telomere lengthening is based on recombination between long and short telomeres, but the mechanisms are not currently understood. ALT has long been considered the result of defects in cellular recombination pathways, but despite intense efforts no deficiencies in recombination regulators have been identified in ALT-cells. Recent data suggest the hypothesis that ALT relies on aberrant recombination pathways needs to be reexamined and is likely incorrect. We discovered that ALT is likely a consequence of poor histone placement at repetitive regions, such as telomeres. We can induce ALT dependent telomeric recombination by suppression of isoforms of the histone chaperone Asf1. Upon Asf1 down regulation all characteristics of ALT emerge in primary and transformed cells, which include telomere sister chromatid exchange, telomere length heterogeneity, the formation of single stranded telomeric C-circles and the colocalization of PML, RPA and TTAGGG repeats in ALT associated PML bodies. The three intellectually connected but independent aims of this proposal are designed to investigate our novel concept for the ALT mechanism, which suggests that improper nucleosome placement at telomeres leads to single stranded loops at telomeres, which then readily recombine with each other. In AIM1 we will investigate telomere structure in cells with suppressed Asf1, as well as nucleosome placement and DNA damage signaling at telomeres and throughout the nucleus in Asf1 suppressed cells. We will also address whether Asf1 dependent ALT activation is capable of long-term telomere maintenance. AIM2 is designed to investigate why Asf1 suppression has telomere-specific effects and whether it leads to changes in telomeric chromatin in primary and transformed cells, therefore defining an ALT specific epigenetic signature. In AIM3 we will investigate the Asf1 status of ALT tumor cells, whether ALT can be suppressed by Asf1 expression, and whether ALT is an epigenetic state that can be induced by constitutive Asf1 suppression.
描述(由申请人提供):端粒是线性染色体的天然末端,对基因组稳定性、细胞活力和染色体完整性至关重要。端粒在每次细胞分裂期间缩短,代表细胞时钟并限制复制寿命。为了克服这一限制,癌细胞必须激活端粒维持机制,从而抵消端粒缩短并赋予细胞永生。百分之九十的癌症是通过激活端粒酶来实现的,端粒酶是一种逆转录酶复合物,它将端粒重复序列添加到染色体末端。其余10%的癌症利用基于重组的端粒长度维持机制,称为ALT(端粒替代延长)。虽然端粒酶激活是更常用的机制和广泛的研究,它是越来越清楚,ALT途径可以激活端粒酶抑制,强调端粒延长可以成功靶向癌症治疗之前,必须了解两个端粒维持机制。ALT依赖性端粒延长是基于长短端粒之间的重组,但目前还不清楚其机制。ALT长期以来被认为是细胞重组途径缺陷的结果,但尽管付出了巨大努力,在ALT细胞中尚未发现重组调节因子的缺陷。最近的数据表明,ALT依赖于异常重组途径的假设需要重新检查,可能是不正确的。我们发现ALT可能是重复区域(如端粒)组蛋白放置不良的结果。我们可以通过抑制组蛋白伴侣Asf1的亚型来诱导ALT依赖的端粒重组。Asf1下调后,原代和转化细胞中ALT的所有特征均出现,包括端粒姐妹染色单体交换、端粒长度异质性、单链端粒C环的形成以及PML、RPA和TTAGGG重复序列在ALT相关PML小体中的共定位。这个提议的三个智力上相连但独立的目标旨在研究我们关于ALT机制的新概念,这表明在端粒处不适当的核小体放置会导致端粒处的单链环,然后它们很容易彼此重组。在AIM1中,我们将研究Asf1抑制细胞中的端粒结构,以及Asf1抑制细胞中端粒和整个细胞核中的核小体放置和DNA损伤信号。我们还将讨论Asf1依赖性ALT激活是否能够长期维持端粒。AIM2旨在研究为什么Asf1抑制具有端粒特异性效应,以及它是否会导致原代和转化细胞中端粒染色质的变化,从而定义ALT特异性表观遗传特征。在AIM3中,我们将研究ALT肿瘤细胞的Asf1状态,ALT是否可以被Asf1表达抑制,以及ALT是否是一种表观遗传状态,可以通过组成性Asf1抑制诱导。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jan Karlseder其他文献
Jan Karlseder的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jan Karlseder', 18)}}的其他基金
A nucleus-to-mitochondria nucleic acid-sensing pathway prevents bypass of age-associated proliferative boundaries
细胞核到线粒体核酸传感途径可防止绕过与年龄相关的增殖边界
- 批准号:
10587704 - 财政年份:2022
- 资助金额:
$ 40.26万 - 项目类别:
A nucleus-to-mitochondria nucleic acid-sensing pathway prevents bypass of age-associated proliferative boundaries
细胞核到线粒体核酸传感途径可防止绕过与年龄相关的增殖边界
- 批准号:
10709000 - 财政年份:2022
- 资助金额:
$ 40.26万 - 项目类别:
Spontaneous replication fork collapse regulates telomere length homeostasis in wild type yeast
自发复制叉崩溃调节野生型酵母的端粒长度稳态
- 批准号:
10371165 - 财政年份:2021
- 资助金额:
$ 40.26万 - 项目类别:
Spontaneous replication fork collapse regulates telomere length homeostasis in wild type yeast
自发复制叉崩溃调节野生型酵母的端粒长度稳态
- 批准号:
10549328 - 财政年份:2021
- 资助金额:
$ 40.26万 - 项目类别:
Understanding the role of autophagy-regulated cell death in the escape from replicative crisis
了解自噬调节的细胞死亡在逃避复制危机中的作用
- 批准号:
10529309 - 财政年份:2019
- 资助金额:
$ 40.26万 - 项目类别:
Understanding the role of autophagy-regulated cell death in the escape from replicative crisis
了解自噬调节的细胞死亡在逃避复制危机中的作用
- 批准号:
10296665 - 财政年份:2019
- 资助金额:
$ 40.26万 - 项目类别:
Understanding the role of autophagy-regulated cell death in the escape from replicative crisis
了解自噬调节的细胞死亡在逃避复制危机中的作用
- 批准号:
9888219 - 财政年份:2019
- 资助金额:
$ 40.26万 - 项目类别:
Understanding the role of autophagy-regulated cell death in the escape from replicative crisis
了解自噬调节的细胞死亡在逃避复制危机中的作用
- 批准号:
10063861 - 财政年份:2019
- 资助金额:
$ 40.26万 - 项目类别:
Understanding DNA break repair pathway choice regulation by the cNHEJ inhibitor CYREN
了解 cNHEJ 抑制剂 CYREN 的 DNA 断裂修复途径选择调节
- 批准号:
10397557 - 财政年份:2018
- 资助金额:
$ 40.26万 - 项目类别:
Understanding DNA break repair pathway choice regulation by the cNHEJ inhibitor CYREN
了解 cNHEJ 抑制剂 CYREN 的 DNA 断裂修复途径选择调节
- 批准号:
10153737 - 财政年份:2018
- 资助金额:
$ 40.26万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 40.26万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 40.26万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 40.26万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 40.26万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 40.26万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 40.26万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 40.26万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 40.26万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 40.26万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 40.26万 - 项目类别:
Research Grant