Microbial adaptation and the statistics of epistasis and pleiotropy
微生物适应以及上位性和多效性的统计
基本信息
- 批准号:9069882
- 负责人:
- 金额:$ 32.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAntibiotic ResistanceBiological AssayChromosomesComplexDrug resistanceEnvironmentEthanolEvolutionFaceFrequenciesGenetic EpistasisGenetic RecombinationGenetic VariationGlucoseGoalsHealthHumanImmuneIndividualLaboratoriesLibrariesLinkMaintenanceMalignant NeoplasmsMeasuresMicrobeMutationNatural SelectionsNitrogenNutrientPatternPharmaceutical PreparationsPhenotypePlant RootsPopulationPopulation CharacteristicsProcessPublic HealthRestRoleSaccharomycetalesSodium ChlorideStressStructureSurveysSystemTestingVariantViralVirusWorkYeastsabstractingactionable mutationasexualbasefitnessknockout genemathematical modelmicrobialnovelnovel strategiespathogenpleiotropismpublic health relevancerate of changeresponsestatisticstheories
项目摘要
DESCRIPTION (provided by applicant):
PROJECT SUMMARY/ABSTRACT The overall goal of this work is to understand adaptation in microbial populations, using a combination of mathematical modeling and high-throughput experimental evolution in budding yeast. Specifically, we aim to predict how evolution chooses probabilistically among the spectrum of possible mutational trajectories in these populations. In the short term, evolution depends primarily on the distribution of fitness effects of individual mutations. However, on longer timescales epistatic interactions between mutations can be crucial for adaptation. Similarly, mutations often have different fitness effects in different environments ("pleiotropy for fitness"). This is essential to long-term adaptation in fluctuating environments. Recent work shows that epistasis and pleiotropy for fitness are strong and common among specific sets of mutations in many microbial and viral systems. However, these studies of specific limited sets of mutations cannot fully explain how epistasis and pleiotropy constrain the rate, repeatability, or dynamics of adaptation in microbial populations. And even given a complete set of epistatic and pleiotropic interactions, we cannot predict how evolution will act in all but a few particularly simple cases. This severely limits our ability to predict th evolution of complex phenotypes, such as compensated antibiotic resistance, multiple mutations required for immune escape, or multiple gene knockouts enabling cancer evolution. The central objective of this proposal is to examine the role of epistasis and pleiotropy for fitness in the evolution of microbial populations. Rather than characterizing specific examples, we propose to survey the overall statistics of epistasis and pleiotropy that are relevant for constraining microbial adaptation. We will then predict how this epistasis and pleiotropy alters how evolution chooses among possible mutational trajectories. In Aim 1, we will measure the statistics of epistasis using a novel strategy for high-throughput experimental evolution. Specifically, we will determine the statistical tendency of different mutational trajectories to diverge in their long-tem prospects. In Aim 2, we will predict how epistasis interacts with genetic variation to constrain th evolution of microbial populations, and test these predictions with laboratory evolution in budding yeast. Finally, in Aim 3, we will measure how the fitness effects of mutations change across related environments and predict how this alters the course of microbial adaptation. We will focus on environmental fluctuations that are particularly common in the evolution of microbial populations, such as adaptation to fluctuating nutrient concentrations and varying intensities of environmental stresses. In contrast to recent work probing epistasis and pleiotropy between small and specific sets of mutations, our approach will provide a comprehensive picture of the degree to which these factors alter the course of microbial evolution.
描述(由申请人提供):
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael M Desai其他文献
Reverse evolution and evolutionary memory
逆向进化和进化记忆
- DOI:
10.1038/ng0209-142 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:29.000
- 作者:
Michael M Desai - 通讯作者:
Michael M Desai
Michael M Desai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael M Desai', 18)}}的其他基金
Microbial adaptation and the statistics of epistasis and pleiotropy
微生物适应以及上位性和多效性的统计
- 批准号:
8683196 - 财政年份:2013
- 资助金额:
$ 32.11万 - 项目类别:
Microbial adaptation and the statistics of epistasis and pleiotropy
微生物适应以及上位性和多效性的统计
- 批准号:
8856266 - 财政年份:2013
- 资助金额:
$ 32.11万 - 项目类别:
Microbial Adaptation and the Statistics of Epistasis and Pleiotropy
微生物适应以及上位性和多效性的统计
- 批准号:
10165737 - 财政年份:2013
- 资助金额:
$ 32.11万 - 项目类别:
Microbial Adaptation and the Statistics of Epistasis and Pleiotropy
微生物适应以及上位性和多效性的统计
- 批准号:
10454570 - 财政年份:2013
- 资助金额:
$ 32.11万 - 项目类别:
Microbial adaptation and the statistics of epistasis and pleiotropy
微生物适应以及上位性和多效性的统计
- 批准号:
8421046 - 财政年份:2013
- 资助金额:
$ 32.11万 - 项目类别:
Microbial Adaptation and the Statistics of Epistasis and Pleiotropy
微生物适应以及上位性和多效性的统计
- 批准号:
10629317 - 财政年份:2013
- 资助金额:
$ 32.11万 - 项目类别:
相似海外基金
Ecological and Evolutionary Drivers of Antibiotic Resistance in Patients
患者抗生素耐药性的生态和进化驱动因素
- 批准号:
EP/Y031067/1 - 财政年份:2024
- 资助金额:
$ 32.11万 - 项目类别:
Research Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307222 - 财政年份:2024
- 资助金额:
$ 32.11万 - 项目类别:
Standard Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307223 - 财政年份:2024
- 资助金额:
$ 32.11万 - 项目类别:
Standard Grant
Molecular Epidemiology of Antibiotic Resistance in Clostridioides difficile
艰难梭菌抗生素耐药性的分子流行病学
- 批准号:
502587 - 财政年份:2024
- 资助金额:
$ 32.11万 - 项目类别:
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
- 批准号:
MR/Y013131/1 - 财政年份:2024
- 资助金额:
$ 32.11万 - 项目类别:
Research Grant
Determining structural dynamics of membrane proteins in their native environment: focus on bacterial antibiotic resistance
确定膜蛋白在其天然环境中的结构动力学:关注细菌抗生素耐药性
- 批准号:
MR/X009580/1 - 财政年份:2024
- 资助金额:
$ 32.11万 - 项目类别:
Fellowship
CAREER: Systems Microbiology and InterdiscipLinary Education for Halting Environmental Antibiotic Resistance Transmission (SMILE HEART)
职业:阻止环境抗生素耐药性传播的系统微生物学和跨学科教育(SMILE HEART)
- 批准号:
2340818 - 财政年份:2024
- 资助金额:
$ 32.11万 - 项目类别:
Continuing Grant
Reinforcing the battle at the bacterial cell wall: Structure-guided characterization and inhibition of beta-lactam antibiotic resistance signalling mechanisms
加强细菌细胞壁的战斗:β-内酰胺抗生素耐药信号机制的结构引导表征和抑制
- 批准号:
480022 - 财政年份:2023
- 资助金额:
$ 32.11万 - 项目类别:
Operating Grants
The spread of antibiotic resistance in bacteria-plasmid networks
抗生素耐药性在细菌-质粒网络中的传播
- 批准号:
BB/X010473/1 - 财政年份:2023
- 资助金额:
$ 32.11万 - 项目类别:
Fellowship
An RNA Nanosensor for the Diagnosis of Antibiotic Resistance in M. Tuberculosis
用于诊断结核分枝杆菌抗生素耐药性的 RNA 纳米传感器
- 批准号:
10670613 - 财政年份:2023
- 资助金额:
$ 32.11万 - 项目类别:














{{item.name}}会员




