MECHANISMS OF CHROMATIN REMODELING PROMOTING AXON REGENERATION
染色质重塑促进轴突再生的机制
基本信息
- 批准号:9237053
- 负责人:
- 金额:$ 33.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-15 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:AcetylationAcuteAffectAfferent NeuronsAxonBackBreathingCalcineurinCalciumCalcium OscillationsCell LineCellsChromatinCompetenceEP300 geneEpigenetic ProcessEventExhibitsFailureFutureGene ExpressionGene TargetingGenesGoalsGrantGrowthHDAC5 geneHistone AcetylationHistonesHumanHypoxiaHypoxia Inducible FactorIndividualInjuryJUN geneLaboratoriesLinkMediatingMedicalModelingMolecularMusNatural regenerationNerve CrushNervous System PhysiologyNeuraxisNeurobiologyNeuronal HypoxiaNeuronsNuclearNuclear ImportOptic NerveOptic Nerve InjuriesOxygenPathway interactionsPatientsPeripheralPhosphorylationPlayProblem SolvingRecoveryRecovery of FunctionRegenerative responseReportingRetinal Ganglion CellsRoleSTAT3 geneSignal PathwaySignal TransductionSiteSpinal GangliaTestingTimeTranscriptional ActivationTransferaseWorkabstractingaxon injuryaxon regenerationbasecentral nervous system injurychromatin modificationchromatin remodelingdisabilityepigenetic regulationfilaminhistone modificationinjuredinsightnovelprogramsregenerativerelating to nervous systemrepairedresearch studyresponseresponse to injurysciatic nervesuccesstranscription factortreatment strategy
项目摘要
ABSTRACT
Lack of robust axonal regeneration represents a major barrier to functional recovery following injury to
neurons within the central nervous system (CNS). In contrast, peripheral neurons can regenerate after injury.
Activation of a pro-regenerative growth program in peripheral neurons relies on the expression of
regeneration-associated genes (RAGs) that allow for robust axonal re-growth. Although several genes have
been identified for their pro-regenerative influence, individual gene based approaches have yielded limited
success in axon regeneration, illustrating that manipulation of individual RAGs is unlikely to be sufficient to
stimulate robust long-distance axon regeneration in the injured CNS. Therefore, understanding how a large
ensemble of RAGs can be simultaneously activated after injury could reveal strategies to initiate the
transcriptional pro-regenerative program. Epigenetic regulations, which include modification of the chromatin,
affect combinations of multiple genes and hence represent ideal strategies to promote neural repair. Our goal
is to gain new insights into the molecular events that regulate chromatin function in response to injury in
peripheral neurons, and identify potential targets for future treatment of CNS injuries
We previously demonstrated that axon injury elicits an epigenetic switch stimulating the regenerative
competence of sensory neurons. Specifically, we discovered that calcium wave back-propagating from the
site of axonal injury increases histone acetylation levels, stimulating the regenerative competence of sensory
neuron. This work demonstrates a link between axon injury and chromatin remodeling and suggests that a
coordinated pro-regenerative program is initiated by changes in the epigenetic landscape. In our recent
studies, we identified hypoxia-inducible factor 1α (HIF-1α) as an important factor regulating axon
regeneration via epigenetic as well as transcriptional regulatory mechanisms. We found that HIF-1α is
required in injured sensory neurons to increase histone acetylation levels, to stimulate the expression of pro-
regenerative genes and to promote axon regeneration. In mice breathing repeatedly low oxygen levels for
brief periods (i.e., acute intermittent hypoxia, AIH) we observed increased levels of HIF-1α and enhanced
axon regeneration in sensory neurons. However, the signaling pathways in normoxic conditions regulating
HIF-1α accumulation and the precise mechanisms by which HIF-1α regulates chromatin in injured neurons
remain elusive. Here we propose to uncover the molecular mechanisms controlling HIF-1α stability and
activity following injury and to establish its specific roles in chromatin remodeling in injured neurons. We will
also test if AIH can recapitulate at least in part the epigenetic changes elicited by peripheral axon injury and
activate a pro-regenerative program in both peripheral and central neurons. This proposal has the potential to
provide further rationale for the improvement of AIH-based treatment strategies for human patients.
.
抽象的
缺乏强大的轴突再生是损伤后功能恢复的主要障碍
中枢神经系统(CNS)内的神经元。相反,周围神经元在损伤后可以再生。
周围神经元中促再生生长程序的激活依赖于以下物质的表达:
再生相关基因(RAG)允许强健的轴突再生长。虽然有几个基因
已确定其促再生影响,基于个体基因的方法已取得有限的成果
轴突再生的成功,说明对单个 RAG 的操纵不太可能足以
刺激受损中枢神经系统的强健长距离轴突再生。因此,了解如何大
RAGs 集合可以在受伤后同时激活,这可能揭示启动
转录促再生程序。表观遗传调控,包括染色质的修饰,
影响多个基因的组合,因此代表了促进神经修复的理想策略。我们的目标
的目的是获得对调节染色质功能以响应损伤的分子事件的新见解
周围神经元,并确定未来治疗中枢神经系统损伤的潜在靶点
我们之前证明轴突损伤会引发表观遗传开关,刺激再生
感觉神经元的能力。具体来说,我们发现钙波从
轴突损伤部位增加组蛋白乙酰化水平,刺激感觉再生能力
神经元。这项工作证明了轴突损伤和染色质重塑之间的联系,并表明
协调的促再生程序是由表观遗传景观的变化启动的。在我们最近的
研究中,我们确定缺氧诱导因子 1α (HIF-1α) 是调节轴突的重要因子
通过表观遗传和转录调控机制再生。我们发现HIF-1α是
受伤的感觉神经元需要增加组蛋白乙酰化水平,刺激前体的表达
再生基因并促进轴突再生。小鼠反复呼吸低氧水平
短期内(即急性间歇性缺氧,AIH),我们观察到 HIF-1α 水平升高,并且增强
感觉神经元的轴突再生。然而,常氧条件下调节的信号通路
HIF-1α 积累以及 HIF-1α 调节受损神经元染色质的精确机制
仍然难以捉摸。在这里,我们建议揭示控制 HIF-1α 稳定性的分子机制和
损伤后的活性并确定其在受损神经元染色质重塑中的特定作用。我们将
还测试 AIH 是否可以至少部分重现外周轴突损伤引起的表观遗传变化,以及
激活外周和中枢神经元的促再生程序。该提案有潜力
为改进人类患者基于 AIH 的治疗策略提供进一步的理论依据。
。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Valeria Cavalli其他文献
Valeria Cavalli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Valeria Cavalli', 18)}}的其他基金
Unraveling the role of satellite glial cells in sensory hypersensitivity in Fragile X syndrome
揭示卫星胶质细胞在脆性 X 综合征感觉超敏反应中的作用
- 批准号:
10752180 - 财政年份:2023
- 资助金额:
$ 33.36万 - 项目类别:
Characterization of human DRG at the single cell level via integrated transcriptomics and spatial proteomics
通过整合转录组学和空间蛋白质组学在单细胞水平表征人类 DRG
- 批准号:
10707415 - 财政年份:2022
- 资助金额:
$ 33.36万 - 项目类别:
Characterization of human DRG at the single cell level via integrated transcriptomics and spatial proteomics
通过整合转录组学和空间蛋白质组学在单细胞水平表征人类 DRG
- 批准号:
10593846 - 财政年份:2022
- 资助金额:
$ 33.36万 - 项目类别:
2022 Cell Biology of the Neuron Gordon Research Conference and Gordon ReSeminar
2022年神经元细胞生物学戈登研究会议和戈登再研讨会
- 批准号:
9992131 - 财政年份:2021
- 资助金额:
$ 33.36万 - 项目类别:
Multicellular Mechanisms Driving Axon Regeneration
驱动轴突再生的多细胞机制
- 批准号:
10406343 - 财政年份:2021
- 资助金额:
$ 33.36万 - 项目类别:
Multicellular Mechanisms Driving Axon Regeneration
驱动轴突再生的多细胞机制
- 批准号:
10238542 - 财政年份:2021
- 资助金额:
$ 33.36万 - 项目类别:
Multicellular Mechanisms Driving Axon Regeneration
驱动轴突再生的多细胞机制
- 批准号:
10624855 - 财政年份:2021
- 资助金额:
$ 33.36万 - 项目类别:
Functional role of satellite glial cells in axon regeneration
卫星胶质细胞在轴突再生中的功能作用
- 批准号:
9913648 - 财政年份:2019
- 资助金额:
$ 33.36万 - 项目类别:
Functional role of satellite glial cells in axon regeneration
卫星胶质细胞在轴突再生中的功能作用
- 批准号:
10061654 - 财政年份:2019
- 资助金额:
$ 33.36万 - 项目类别:
ELUCIDATING THE ROLE OF NEURONAL MTOR SIGNALING IN SCHWANN CELL DEVELOPMENT
阐明神经元 MTOR 信号转导在施万细胞发育中的作用
- 批准号:
9387143 - 财政年份:2017
- 资助金额:
$ 33.36万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 33.36万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 33.36万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 33.36万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 33.36万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 33.36万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 33.36万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 33.36万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 33.36万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 33.36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 33.36万 - 项目类别:
Standard Grant