Structure and Function of the Elongator Complex
伸长复合体的结构和功能
基本信息
- 批准号:9325029
- 负责人:
- 金额:$ 28.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-30 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:Amyotrophic Lateral SclerosisAnaerobic BacteriaAnimal ModelArchaeaBacteriaBiochemicalBioinformaticsBiologicalBiological AssayBiological ProcessCatalytic DomainCell Cycle RegulationCell physiologyCellsChemicalsCodon NucleotidesComplexCrystallizationDNA DamageDataData SetDefectDevelopmentDiseaseEnzymesEvolutionExocytosisFamilial DysautonomiaGenesGenetic studyGenomeGoalsGrowthHistone AcetylationHoloenzymesHomologous GeneHumanIn VitroIronLaboratoriesLeadLightLinkLiteratureMacromolecular ComplexesModificationMolecularMutationNeuronsOrganismPhasePlayPropertyProteinsRNARNA Polymerase IIReactionRecombinantsRecruitment ActivityRegulationReportingResearchResolutionRolandic EpilepsyRoleSeriesStructureStudy modelsSulfurTranscriptional ActivationTransfer RNATranslationsVirusX-Ray CrystallographyYeastsbasecell motilitydemethylationexperienceexperimental studyin vivoinsightmolecular recognitionmotor neuron degenerationmutantnervous system disorderprotein complexpublic health relevancereconstitutionresponsesuccess
项目摘要
DESCRIPTION (provided by applicant): Approximately 25% of cytoplasmic tRNAs in eukaryotic organisms experience U34 modification at C5, and the modification is thought to be unique to the eukaryotic organisms. Lack of tRNA U34 modification has a disproportionately detrimental effect on translation of several important proteins, due to the encoding genes of which use biased codons that require the modified U34 in tRNAs for efficient translation. Genetic studies indicated that the Elongator complex is responsible for the early stages of the modification. The Elongator complex was initially isolated as part of hyperphosphorylated RNA polymerase II holoenzyme. It has been shown to be involved in a variety of different cellular activities. Defects in the Elongator complex have been linked to several neurological diseases, such as familial dysautonomia (FD), rolandic epilepsy (RE), and amyotrophic lateral sclerosis (ALS). Although the Elongator complex also has been shown to possess histone acetylation activity, accumulating evidence in the literature indicates that tRNA U34 modification at C5 plays a major role in its cellular functions. The Elongator complex is a large macromolecular complex consisting of six subunits of the Elongator proteins, Elp1-6. The third subunit Elp3 is generally regarded as the catalytic subunit, but the mechanism how the Elongator complex carries out tRNA U34 modification at C5 is unknown. Through bioinformatic analysis, we found that the catalytic subunit Elp3, but not other subunits of the eukaryotic Elongator complex, is present in most archaea, a small number of bacteria, and two viruses. Based on this and other bioinformatic analyses, we propose that, unlike tRNA U34 modification in eukaryotic organisms that requires all six subunits of the Elongator complex, Elp3 alone is sufficient for the same modification reaction in archaea and bacteria. Therefore, archaeal or bacterial Elp3 provides us a simplified platform for the study of the mechanism of tRNA U34 modification at C5. In this application, we will utilize expertise from four laboratories to carry out research with three specific aims. First, we will provide the evidence that Elp3 is involved in tRNA U34 modification at C5 in archaea and bacteria by characterizing the modified U34 in tRNAs isolated from these species. Second, we will perform in vitro reconstitution of tRNA U34 modification at C5 using the recombinant archaeal Elp3 and the Elongator complex isolated from yeast cells. Third, we will carry out structural studies of Elp3 alone as well as in complex with tRNA. The long-term goal of this project is to elucidate the structure and function of the eukaryotic Elongator complex, which,
while maintaining the main and evolutionarily ancient function of tRNA U34 modification at C5, may have acquired additional biochemical functions over the course of evolution by recruiting Elp1-2 and Elp4-6.
描述(由申请人提供):真核生物中约25%的细胞质tRNA在C5处经历U34修饰,并且认为该修饰是真核生物所特有的。缺乏tRNA U34修饰对几种重要蛋白质的翻译具有不成比例的不利影响,这是由于其编码基因使用偏向密码子,需要tRNA中修饰的U34来进行有效翻译。遗传学研究表明,延长复合体负责早期阶段的修改。延伸体复合物最初是作为过度磷酸化的RNA聚合酶II全酶的一部分分离的。它已被证明参与各种不同的细胞活动。延长肌复合体的缺陷与多种神经系统疾病有关,例如家族性自主神经功能障碍(FD)、罗兰癫痫(RE)和肌萎缩侧索硬化症(ALS)。尽管Elongator复合物也被证明具有组蛋白乙酰化活性,但文献中积累的证据表明,C5处的tRNA U34修饰在其细胞功能中起主要作用。Elongator复合物是由Elongator蛋白的六个亚基Elp 1 -6组成的大分子复合物。第三亚基Elp 3通常被认为是催化亚基,但Elongator复合物如何在C5处进行tRNA U34修饰的机制尚不清楚。通过生物信息学分析,我们发现,催化亚基Elp 3,而不是真核拉长复合物的其他亚基,存在于大多数古细菌,少数细菌,和两种病毒。基于这一点和其他生物信息学分析,我们提出,不像tRNA U34修饰在真核生物中,需要所有六个亚基的延伸复合物,Elp 3单独是足够的古细菌和细菌中相同的修饰反应。因此,古细菌或细菌Elp 3为我们研究tRNA U34在C5的修饰机制提供了一个简化的平台。在这项申请中,我们将利用四个实验室的专业知识,以三个具体目标进行研究。首先,我们将提供证据表明,Elp 3是在古细菌和细菌中的C5的tRNA U34的修饰,通过表征从这些物种中分离的tRNA的U34的修饰。其次,我们将使用从酵母细胞分离的重组古细菌Elp 3和Elongator复合物在C5处进行tRNA U34修饰的体外重建。第三,我们将进行Elp 3单独以及与tRNA复合的结构研究。该项目的长期目标是阐明真核延长子复合物的结构和功能,
虽然保持了C5处tRNA U34修饰的主要和进化上古老的功能,但可能在进化过程中通过募集Elp 1 -2和Elp 4 -6获得了额外的生化功能。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Archaeal Elp3 catalyzes tRNA wobble uridine modification at C5 via a radical mechanism.
- DOI:10.1038/nchembio.1610
- 发表时间:2014-10
- 期刊:
- 影响因子:14.8
- 作者:Selvadurai, Kiruthika;Wang, Pei;Seimetz, Joseph;Huang, Raven H.
- 通讯作者:Huang, Raven H.
Reconstitution and structure of a bacterial Pnkp1-Rnl-Hen1 RNA repair complex.
- DOI:10.1038/ncomms7876
- 发表时间:2015-04-17
- 期刊:
- 影响因子:16.6
- 作者:Wang P;Selvadurai K;Huang RH
- 通讯作者:Huang RH
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Raven H Huang其他文献
Raven H Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Raven H Huang', 18)}}的其他基金
Rescue and repair of stalled ribosome damaged by ribosome-specific ribotoxins
被核糖体特异性核毒素损坏的停滞核糖体的拯救和修复
- 批准号:
10799097 - 财政年份:2022
- 资助金额:
$ 28.82万 - 项目类别:
Rescue and repair of stalled ribosome damaged by ribosome-specific ribotoxins
被核糖体特异性核毒素损坏的停滞核糖体的拯救和修复
- 批准号:
10615180 - 财政年份:2022
- 资助金额:
$ 28.82万 - 项目类别:
Rescue and repair of stalled ribosome damaged by ribosome-specific ribotoxins
被核糖体特异性核毒素损坏的停滞核糖体的拯救和修复
- 批准号:
10467347 - 财政年份:2022
- 资助金额:
$ 28.82万 - 项目类别:
Generation and application of second messenger molecules by SMODS and SAVED
SMODS和SAVED第二信使分子的生成和应用
- 批准号:
9916469 - 财政年份:2020
- 资助金额:
$ 28.82万 - 项目类别:
Generation and application of second messenger molecules by SMODS and SAVED
SMODS和SAVED第二信使分子的生成和应用
- 批准号:
10078261 - 财政年份:2020
- 资助金额:
$ 28.82万 - 项目类别:
Genome-wide profiling of RNA damage and repair in vivo
体内 RNA 损伤和修复的全基因组分析
- 批准号:
9751333 - 财政年份:2016
- 资助金额:
$ 28.82万 - 项目类别:
Genome-wide profiling of RNA damage and repair in vivo
体内 RNA 损伤和修复的全基因组分析
- 批准号:
9352862 - 财政年份:2016
- 资助金额:
$ 28.82万 - 项目类别:
Genome-wide profiling of RNA damage and repair in vivo
体内 RNA 损伤和修复的全基因组分析
- 批准号:
9177493 - 财政年份:2016
- 资助金额:
$ 28.82万 - 项目类别:
相似海外基金
Identification and isolation of anaerobic bacteria that degrade bacterial cell wall
降解细菌细胞壁的厌氧菌的鉴定与分离
- 批准号:
22H02487 - 财政年份:2022
- 资助金额:
$ 28.82万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Enzymology of cofactor and amino acid metabolism in anaerobic bacteria
厌氧菌辅助因子和氨基酸代谢的酶学
- 批准号:
RGPIN-2022-03200 - 财政年份:2022
- 资助金额:
$ 28.82万 - 项目类别:
Discovery Grants Program - Individual
High-throughput isolation of anaerobic bacteria
厌氧菌的高通量分离
- 批准号:
572711-2022 - 财政年份:2022
- 资助金额:
$ 28.82万 - 项目类别:
University Undergraduate Student Research Awards
Elucidating the mechanisms of O2-sensitivity of anaerobic bacteria Bifidobacterium.
阐明厌氧菌双歧杆菌的 O2 敏感性机制。
- 批准号:
22K07058 - 财政年份:2022
- 资助金额:
$ 28.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automatic and accurate identification of aerobic bacteria, anaerobic bacteria, yeasts, and fungi in clinical samples derived from animals and from feed for pets
自动、准确地鉴定来自动物和宠物饲料的临床样品中的需氧细菌、厌氧细菌、酵母菌和真菌
- 批准号:
10440741 - 财政年份:2021
- 资助金额:
$ 28.82万 - 项目类别:
Regulation of virulence in fungi under coculture condition with anaerobic bacteria
厌氧菌共培养条件下真菌毒力的调节
- 批准号:
21K07009 - 财政年份:2021
- 资助金额:
$ 28.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Polymicrobial interactions between commensal obligate anaerobic bacteria and cystic fibrosis pathogen P. aeruginosa
共生专性厌氧菌与囊性纤维化病原体铜绿假单胞菌之间的多种微生物相互作用
- 批准号:
10275319 - 财政年份:2021
- 资助金额:
$ 28.82万 - 项目类别:
Platform for the automated isolation and characterization of anaerobic bacteria
厌氧菌自动分离和表征平台
- 批准号:
445552570 - 财政年份:2020
- 资助金额:
$ 28.82万 - 项目类别:
Major Research Instrumentation
Development of therapy for triple negative breast cancer using anaerobic bacteria
利用厌氧菌开发三阴性乳腺癌疗法
- 批准号:
19K16452 - 财政年份:2019
- 资助金额:
$ 28.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of gene engineering method for anaerobic bacteria for efficient bio-hydrogen production
开发厌氧菌高效生物制氢的基因工程方法
- 批准号:
18K11708 - 财政年份:2018
- 资助金额:
$ 28.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)