Mechanical Regulation of Cell Adhesion by Dynamic Cytoskeletal Assemblies - Resubmission 01
动态细胞骨架组件对细胞粘附的机械调节 - 重新提交 01
基本信息
- 批准号:9341353
- 负责人:
- 金额:$ 30.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-21 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAdherens JunctionAdhesionsArchitectureAtomic Force MicroscopyBehaviorBiophysicsCell AdhesionCell modelCell-Cell AdhesionCellsCellular MorphologyCellular biologyCharacteristicsComplexComputer SimulationCouplingCytoskeletal ModelingCytoskeletal ProteinsCytoskeletonDataDevelopmentDiseaseEnvironmentEventExtracellular MatrixFocal AdhesionsGenerationsGeneticHomeostasisIntercellular JunctionsKineticsKnowledgeMechanicsMediatingModelingModernizationMolecularMolecular TargetMorphogenesisMorphologyMotionMovementMulticellular ProcessPhysicsPhysiological ProcessesProcessProteinsRegulationRoleShapesTestingTissue ModelTissuesTractionTranslatingWorkadhesion receptorbiophysical propertiescell behaviorcell growth regulationcell motilitydensityexperimental studyhuman diseaseimprovedinsightkinematicsmigrationmonolayeroptogeneticspublic health relevancequantitative imagingself organizationsimulationspatiotemporaltheoriesthree-dimensional modelingtransmission process
项目摘要
DESCRIPTION (provided by applicant): Cell adhesion and morphology are regulated by dynamic cytoskeletal assemblies that mediate force transmission across the cell and to the surrounding environment. Spatiotemporal regulation of cellular force generation and adhesion drive morphogenic changes in diverse physiological processes including cell migration, tissue morphogenesis and ECM remodeling. While significant progress has been made to understand the molecular mechanisms of cell adhesion and force generation, we lack a framework to understand how the complex biophysical behaviors of adhesion plaques and the actin cytoskeleton emerge from dynamic ensembles of cytoskeletal proteins. We hypothesize that understanding force transmission within adhesion plaques and the actin cytoskeleton will provide the necessary insight to translate molecular mechanisms to complex physical behaviors of cells. We propose experiments that will elucidate mechanisms of force transmission through focal adhesions, cell-cell adhesions and the actin cytoskeleton and how these are coordinated to regulate force transmission in multicellular tissue. We approach this problem by integrating molecular cell biology approaches with advanced quantitative imaging of cytoskeletal dynamics and biophysical measurements. By obtaining kinetic and kinematic (motion) signatures of proteins at varying levels of tension, we identify mechanisms of force transmission within focal adhesions and the actin cytoskeleton. We then collaborate closely with theoretical physicists to test the predictions of analytical theory and simulations with our quantitative biophysical measurements. This work builds a quantitative understanding of the physics of cell adhesion, tension and shape that, ultimately, will provide the framework for theories and models of cell migration and tissue morphogenesis that will have predictive power in understanding complex physiological processes. Through knowledge gained in these aims, we will identify the role of mechanical coupling between cell-ECM and cell-cell adhesions in controlling morphological rearrangements in multi-cellular tissue. This will enable the development of improved therapies to treat diseases involved in tissue homeostasis that currently remain elusive by solely treating molecular targets.
描述(由适用提供):细胞粘附和形态受动态细胞骨架组件的调节,这些组件介导了跨细胞和周围环境的力传递。细胞力产生和粘合剂驱动的时空调节在潜水员物理过程中的形态变化,包括细胞迁移,组织形态发生和ECM重塑。尽管已经取得了重大进展来了解细胞粘附和力产生的分子机制,但我们缺乏一个框架来了解粘合剂斑块的复杂生物物理行为以及肌动蛋白细胞骨骼从细胞骨架蛋白的动态融合中出现。我们假设了解粘合剂斑块中的力传递,而肌动蛋白细胞骨架将提供必要的见解,以将分子机制转化为细胞的复杂物理行为。我们提出的实验将通过局灶性粘附,细胞 - 细胞粘附和肌动蛋白细胞骨架以及如何协调以调节多细胞组织中的力传递,从而阐明力传递的机制。我们通过将分子细胞生物学方法与细胞骨架动力学和生物物理测量的高级定量成像进行整合来解决这个问题。通过在不同张力水平下获得蛋白质的动力学和运动学(运动)特征,我们可以确定局灶性粘附和肌动蛋白细胞骨架内力传播机制。然后,我们与理论物理学家紧密合作,通过我们的定量生物物理测量值测试分析理论和模拟的预测。这项工作建立了对细胞粘附,张力和形状物理学的定量理解,最终将为细胞迁移和组织形态发生的理论和模型提供框架,这些理论和模型将在理解复杂的物理过程方面具有预测能力。通过这些目标中获得的知识,我们将确定细胞ECM和细胞粘附之间机械耦合在控制多细胞组织中形态重排方面的作用。这将使改进的疗法的发展能够治疗涉及组织稳态的疾病,而这些疾病目前仅通过仅处理分子靶标而难以捉摸。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Margaret Lise Gardel其他文献
Margaret Lise Gardel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Margaret Lise Gardel', 18)}}的其他基金
Mechanisms of Mechanotransduction by LIM Domain Proteins
LIM 结构域蛋白的力转导机制
- 批准号:
10657771 - 财政年份:2022
- 资助金额:
$ 30.77万 - 项目类别:
Mechanisms of Mechanotransduction by LIM Domain Proteins
LIM 结构域蛋白的力转导机制
- 批准号:
10522418 - 财政年份:2022
- 资助金额:
$ 30.77万 - 项目类别:
Mechanical Regulation of Cell Adhesion by Dynamic Cytoskeletal Assemblies
动态细胞骨架组件对细胞粘附的机械调节
- 批准号:
10533356 - 财政年份:2015
- 资助金额:
$ 30.77万 - 项目类别:
Mechanical Regulation of Cell Adhesion by Dynamic Cytoskeletal Assemblies
动态细胞骨架组件对细胞粘附的机械调节
- 批准号:
10323268 - 财政年份:2015
- 资助金额:
$ 30.77万 - 项目类别:
Mechanical Regulation of Cell Adhesion by Dynamic Cytoskeletal Assemblies
动态细胞骨架组件对细胞粘附的机械调节
- 批准号:
10063995 - 财政年份:2015
- 资助金额:
$ 30.77万 - 项目类别:
Mechanical Regulation of Cell Adhesion by Dynamic Cytoskeletal Assemblies
动态细胞骨架组件对细胞粘附的机械调节
- 批准号:
9916595 - 财政年份:2015
- 资助金额:
$ 30.77万 - 项目类别:
2007 NIH Director's Pioneer Award Program (DP1)
2007 NIH 院长先锋奖计划 (DP1)
- 批准号:
7341371 - 财政年份:2007
- 资助金额:
$ 30.77万 - 项目类别:
2007 NIH Director's Pioneer Award Program (DP1)
2007 NIH 院长先锋奖计划 (DP1)
- 批准号:
7683827 - 财政年份:2007
- 资助金额:
$ 30.77万 - 项目类别:
2007 NIH Director's Pioneer Award Program (DP1)
2007 NIH 院长先锋奖计划 (DP1)
- 批准号:
8137914 - 财政年份:2007
- 资助金额:
$ 30.77万 - 项目类别:
2007 NIH Director's Pioneer Award Program (DP1)
2007 NIH 院长先锋奖计划 (DP1)
- 批准号:
7936092 - 财政年份:2007
- 资助金额:
$ 30.77万 - 项目类别:
相似国自然基金
上皮层形态发生过程中远程机械力传导的分子作用机制
- 批准号:31900563
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
基于飞秒激光微纳手术研究亚细胞尺度分子马达网络调控细胞三维运动的生物物理机理
- 批准号:31701215
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigating the epidermal microenvironment in melanoblast migration and invasion: a novel approach to understanding invasive melanoma
研究黑色素细胞迁移和侵袭的表皮微环境:一种了解侵袭性黑色素瘤的新方法
- 批准号:
10537221 - 财政年份:2023
- 资助金额:
$ 30.77万 - 项目类别:
Diversity Supplement: Novel Role of Nephron Epithelialization in Nuclear Signaling
多样性补充:肾单位上皮化在核信号传导中的新作用
- 批准号:
10853534 - 财政年份:2023
- 资助金额:
$ 30.77万 - 项目类别:
Mechanisms of KSHV-induced endothelial cell loss of contact inhibition of proliferation
KSHV诱导内皮细胞失去接触抑制增殖的机制
- 批准号:
10762813 - 财政年份:2023
- 资助金额:
$ 30.77万 - 项目类别:
Mechanisms of microtubule-mediated cranial neural crest EMT and differentiation
微管介导的颅神经嵴EMT和分化机制
- 批准号:
10507726 - 财政年份:2022
- 资助金额:
$ 30.77万 - 项目类别:
Polarity proteins and intestinal mucosal responses to inflammation and injury
极性蛋白和肠粘膜对炎症和损伤的反应
- 批准号:
10442201 - 财政年份:2022
- 资助金额:
$ 30.77万 - 项目类别: