Mechanical Regulation of Cell Adhesion by Dynamic Cytoskeletal Assemblies

动态细胞骨架组件对细胞粘附的机械调节

基本信息

  • 批准号:
    10063995
  • 负责人:
  • 金额:
    $ 31.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-21 至 2023-11-30
  • 项目状态:
    已结题

项目摘要

Project Summary Mechanical Regulation of Cell Adhesion by Dynamic Cytoskeletal Assemblies Epithelial tissue is built by dynamic adhesions, cell-cell junctions, that connect neighboring cells to maintain tissue cohesion and barrier function yet also allow dynamic processes like wound healing and tissue morphogenesis. Contractile forces generated within the actomyosin cytoskeleton are transmitted to cell-cell junctions to control the local cell shape and motions that sculpt tissue morphogenesis and initiate downstream signaling pathways that control cell fate. Understanding how the biophysical properties of cell-cell junctions are regulated has widespread implications for understanding and treating defects during embryonic development, for tissue engineering and the diagnosis and treatment of metastatic tumors. This proposal leverages innovative combination of cell biophysics, molecular cell biology, live cell imaging, mathematical modeling and optogenetics to investigate how RhoA signals regulate contractile forces to drive changes in cell-cell junction length that control cell shape and, ultimately, tissue morphogenesis. We propose experiments to elucidate how force-dependent process regulating actomyosin contractility, membrane remodeling and RhoA signaling feedback to each other to control junction length and length changes. We approach this problem by integrating molecular cell biology approaches with advanced quantitative imaging of cytoskeletal dynamics and biophysical measurements. By obtaining kinetic and kinematic (motion) signatures of proteins at varying levels of tension, we identify mechanisms of force transmission within focal adhesions and the actin cytoskeleton. We then collaborate closely with theoretical physicists to test the predictions of analytical theory and simulations with our quantitative biophysical measurements. This work builds a biophysical understanding of cell adhesion, tension and shape that, ultimately, will provide the framework for theories and models of tissue morphogenesis that will have predictive power in understanding in complex physiological processes. More generally, the strategies developed in this proposal can be applied more generally to understand how force-sensitive feedbacks within the cytoskeletal conspire to facilitate cell morphogenic processes. This will enable the development of improved therapies to treat diseases involved in tissue homeostasis that currently remain elusive by solely treating molecular targets.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Margaret Lise Gardel其他文献

Synthetic polymers with biological rigidity
具有生物刚性的合成聚合物
  • DOI:
    10.1038/nature11855
  • 发表时间:
    2013-01-23
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Margaret Lise Gardel
  • 通讯作者:
    Margaret Lise Gardel
Synthetic polymers with biological rigidity
具有生物刚性的合成聚合物
  • DOI:
    10.1038/nature11855
  • 发表时间:
    2013-01-23
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Margaret Lise Gardel
  • 通讯作者:
    Margaret Lise Gardel

Margaret Lise Gardel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Margaret Lise Gardel', 18)}}的其他基金

Mechanisms of Mechanotransduction by LIM Domain Proteins
LIM 结构域蛋白的力转导机制
  • 批准号:
    10657771
  • 财政年份:
    2022
  • 资助金额:
    $ 31.74万
  • 项目类别:
Mechanisms of Mechanotransduction by LIM Domain Proteins
LIM 结构域蛋白的力转导机制
  • 批准号:
    10522418
  • 财政年份:
    2022
  • 资助金额:
    $ 31.74万
  • 项目类别:
Mechanical Regulation of Cell Adhesion by Dynamic Cytoskeletal Assemblies
动态细胞骨架组件对细胞粘附的机械调节
  • 批准号:
    10533356
  • 财政年份:
    2015
  • 资助金额:
    $ 31.74万
  • 项目类别:
Mechanical Regulation of Cell Adhesion by Dynamic Cytoskeletal Assemblies - Resubmission 01
动态细胞骨架组件对细胞粘附的机械调节 - 重新提交 01
  • 批准号:
    9341353
  • 财政年份:
    2015
  • 资助金额:
    $ 31.74万
  • 项目类别:
Mechanical Regulation of Cell Adhesion by Dynamic Cytoskeletal Assemblies
动态细胞骨架组件对细胞粘附的机械调节
  • 批准号:
    10323268
  • 财政年份:
    2015
  • 资助金额:
    $ 31.74万
  • 项目类别:
Mechanical Regulation of Cell Adhesion by Dynamic Cytoskeletal Assemblies
动态细胞骨架组件对细胞粘附的机械调节
  • 批准号:
    9916595
  • 财政年份:
    2015
  • 资助金额:
    $ 31.74万
  • 项目类别:
2007 NIH Director's Pioneer Award Program (DP1)
2007 NIH 院长先锋奖计划 (DP1)
  • 批准号:
    7341371
  • 财政年份:
    2007
  • 资助金额:
    $ 31.74万
  • 项目类别:
2007 NIH Director's Pioneer Award Program (DP1)
2007 NIH 院长先锋奖计划 (DP1)
  • 批准号:
    7683827
  • 财政年份:
    2007
  • 资助金额:
    $ 31.74万
  • 项目类别:
2007 NIH Director's Pioneer Award Program (DP1)
2007 NIH 院长先锋奖计划 (DP1)
  • 批准号:
    8137914
  • 财政年份:
    2007
  • 资助金额:
    $ 31.74万
  • 项目类别:
2007 NIH Director's Pioneer Award Program (DP1)
2007 NIH 院长先锋奖计划 (DP1)
  • 批准号:
    7936092
  • 财政年份:
    2007
  • 资助金额:
    $ 31.74万
  • 项目类别:

相似国自然基金

由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
  • 批准号:
    82360313
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
  • 批准号:
    MR/Y001125/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.74万
  • 项目类别:
    Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
  • 批准号:
    2337141
  • 财政年份:
    2024
  • 资助金额:
    $ 31.74万
  • 项目类别:
    Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
  • 批准号:
    2340865
  • 财政年份:
    2024
  • 资助金额:
    $ 31.74万
  • 项目类别:
    Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
  • 批准号:
    23K14186
  • 财政年份:
    2023
  • 资助金额:
    $ 31.74万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
  • 批准号:
    573067-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 31.74万
  • 项目类别:
    University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
  • 批准号:
    2144380
  • 财政年份:
    2022
  • 资助金额:
    $ 31.74万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
  • 批准号:
    2201236
  • 财政年份:
    2022
  • 资助金额:
    $ 31.74万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
  • 批准号:
    2201235
  • 财政年份:
    2022
  • 资助金额:
    $ 31.74万
  • 项目类别:
    Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
  • 批准号:
    463633
  • 财政年份:
    2022
  • 资助金额:
    $ 31.74万
  • 项目类别:
    Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
  • 批准号:
    546047-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 31.74万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了