Expansion Microscopy
膨胀显微镜
基本信息
- 批准号:9301863
- 负责人:
- 金额:$ 57.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-15 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAntibodiesAxonBindingBiologicalBiologyBiotechnologyBrainCaenorhabditis elegansCellsChemicalsChemistryClinicalDNADimensionsDiseaseEducational workshopEngineeringEquipmentFluorescent in Situ HybridizationGelGenerationsGrantImageImageryIndividualInvestigationIsotropyLabelLearningLipidsManuscriptsMechanicsMethodsMicroscopeMicroscopyMolecularNatureNervous system structureNeurosciencesNucleic AcidsOpticsOrganOrganismPancreasPatternPolymersProteinsProtocols documentationPublishingRNAResearchResolutionRunningSamplingScienceSliceSpecimenStructureSynapsesTechnologyTestingTherapeuticThickTimeTissue imagingTissuesValidationVirusWaterZebrafishcellular imagingcomplex biological systemsdesignfluorophoreinsightinterestlenslight microscopymechanical propertiesmolecular scalenanoscalenovelnovel strategiestechnology developmenttool
项目摘要
Many questions in biology and neuroscience would benefit greatly from a technology that enabled molecular
information (e.g., the identities of specific nucleic acids and proteins) to be imaged throughout preserved 3-D
specimens (e.g., brain circuits), with nanoscale precision. Accordingly, we developed a fundamentally new
approach, published in Science in 2015: in contrast to earlier methods of magnification in light microscopy,
which rely on lenses to optically magnify images of cells and tissues, we physically magnify preserved
specimens. By synthesizing a swellable polyelectrolyte gel directly within a specimen, mechanically
homogenizing the specimen, then dialyzing in water, we could expand tissues by ~4.5x in linear dimension.
This method could separate molecules located within a diffraction-limited volume to distances great enough to
be resolved with conventional microscopes, resulting in an effective resolution of ~70 nm. We call this novel
method expansion microscopy (ExM). Since then, we have made the technology easier to use, creating a
version of ExM which we call proExM (protein retention ExM) that uses commercially available chemicals to
directly anchor genetically encoded fluorophores or antibody-borne fluorophores to the swellable gel, and
validating its ability to preserve nanoscale features in a variety of tissues (accepted at Nature Biotechnology)
and extended ExM to the anchoring and expansion of RNA molecules away from one another for nanoscale
RNA visualization, which we call ExFISH (accepted at Nature Methods). There is great pent-up demand for a
method of nanoscale imaging for extended 3-D specimens, especially one that requires no specialized
equipment; we host visitors weekly in our group at MIT to come and learn and practice ExM, and with the
Janelia Research Campus we will run a workshop to teach ExM hands-on in August 2016. Given the potential
for ExM to solve many problems in neuroscience, we now propose to increase its power and versatility.
Specifically, we will (Aim 1) develop optimized forms of ExM for difficult specimens (such as C. elegans), as
well as strategies for single-sample validation (by creating “physical scalebars” within samples), (Aim 2) invent
new chemistries for expanding specimens by 20x or 80x in linear dimension, enabling ~15 nm and ~3 nm
effective resolutions respectively, and (Aim 3) extend ExM anchoring chemistries for the visualization of lipids
and DNA, as well as combinations of biomolecules (e.g., seeing proteins, DNA, and RNA all at once). Our
project will result in tools of great applicability in neuroscience, as well as throughout biology. We propose a
fast-paced, 4 year technology development grant that will result in tools that will enable a large number of
scientific problems to be analyzed. We will distribute all tools as freely as possible, and teach usage thereof.
生物学和神经科学中的许多问题将大大受益于一种使分子生物学成为可能的技术。
信息(例如,特定核酸和蛋白质的身份)在整个保存的3-D成像
样本(例如,大脑电路),具有纳米级的精度。因此,我们开发了一种全新的
2015年发表在《科学》杂志上的一项研究:与早期的光学显微镜放大方法相比,
它依靠透镜来光学放大细胞和组织的图像,
标本通过直接在样品内机械地合成可溶胀的凝胶,
将标本浸泡,然后在水中透析,我们可以将组织在线性尺寸上扩大约4.5倍。
这种方法可以将位于衍射极限体积内的分子分离到足够大的距离,
可以用传统的显微镜进行分辨,有效分辨率约为70 nm。我们称之为小说
方法扩展显微镜(ExM)。从那时起,我们使这项技术更容易使用,创造了一个
ExM的一个版本,我们称之为proExM(蛋白质保留ExM),它使用市售化学品,
将遗传编码的荧光团或抗体携带的荧光团直接锚到可溶胀凝胶上,和
验证其在各种组织中保留纳米级特征的能力(在Nature Biotechnology接受)
并将ExM扩展到RNA分子的锚定和扩张,
RNA可视化,我们称之为ExFISH(在Nature Methods接受)。有大量被压抑的需求,
一种用于扩展三维标本的纳米级成像方法,尤其是不需要专门的
设备;我们每周在麻省理工学院的团队中接待来访者来学习和练习ExM,
Janelia研究校园,我们将在2016年8月举办一个研讨会,教授ExM实践。考虑到潜在的
对于ExM解决神经科学中的许多问题,我们现在建议增加其功能和多功能性。
具体来说,我们将(目标1)开发优化形式的ExM困难的标本(如C。elegans),as
以及单样本验证策略(通过在样本中创建“物理比例尺”),(目标2)发明
新的化学成分,可将样品的线性尺寸扩大20倍或80倍,
有效的分辨率分别,和(目的3)扩展ExM锚定化学的可视化脂质
和DNA,以及生物分子的组合(例如,同时看到蛋白质、DNA和RNA)。我们
该项目将产生在神经科学以及整个生物学中非常适用的工具。我们提出了一个
快节奏,4年的技术开发赠款,将导致工具,将使大量的
需要分析的科学问题。我们将尽可能免费地分发所有工具,并教授其使用方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edward S. Boyden其他文献
Q&A: Expansion microscopy
- DOI:
10.1186/s12915-017-0393-3 - 发表时间:
2017-06-19 - 期刊:
- 影响因子:4.500
- 作者:
Ruixuan Gao;Shoh M. Asano;Edward S. Boyden - 通讯作者:
Edward S. Boyden
Canal à cations activés par la lumière et ses utilisations
运河 à 阳离子 activés par la lumière et ses utilizations
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Edward S. Boyden;Karl Deisseroth - 通讯作者:
Karl Deisseroth
Procédés et compositions destinés à diminuer la douleur chronique
慢性悲伤的进程和作曲
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Edward S. Boyden;J. Eisenach;Kenneth P. Greenberg;Alan Horsager;Benjamin C. Matteo;Douglas G. Ririe;Christian T. Wentz - 通讯作者:
Christian T. Wentz
A multi-modal single-cell and spatial expression map of metastatic breast cancer biopsies across clinicopathological features
转移性乳腺癌活检的多模态单细胞和空间表达图谱,涵盖临床病理特征
- DOI:
10.1038/s41591-024-03215-z - 发表时间:
2024-10-30 - 期刊:
- 影响因子:50.000
- 作者:
Johanna Klughammer;Daniel L. Abravanel;Åsa Segerstolpe;Timothy R. Blosser;Yury Goltsev;Yi Cui;Daniel R. Goodwin;Anubhav Sinha;Orr Ashenberg;Michal Slyper;Sébastien Vigneau;Judit Jané‐Valbuena;Shahar Alon;Chiara Caraccio;Judy Chen;Ofir Cohen;Nicole Cullen;Laura K. DelloStritto;Danielle Dionne;Janet Files;Allison Frangieh;Karla Helvie;Melissa E. Hughes;Stephanie Inga;Abhay Kanodia;Ana Lako;Colin MacKichan;Simon Mages;Noa Moriel;Evan Murray;Sara Napolitano;Kyleen Nguyen;Mor Nitzan;Rebecca Ortiz;Miraj Patel;Kathleen L. Pfaff;Caroline B. M. Porter;Asaf Rotem;Sarah Strauss;Robert Strasser;Aaron R. Thorner;Madison Turner;Isaac Wakiro;Julia Waldman;Jingyi Wu;Jorge Gómez Tejeda Zañudo;Diane Zhang;Nancy U. Lin;Sara M. Tolaney;Eric P. Winer;Edward S. Boyden;Fei Chen;Garry P. Nolan;Scott J. Rodig;Xiaowei Zhuang;Orit Rozenblatt-Rosen;Bruce E. Johnson;Aviv Regev;Nikhil Wagle - 通讯作者:
Nikhil Wagle
Long time silencing of orexin/hypocretin neurons using archaerhodopsin induces slow-wave sleep in mice
使用古视紫红质长时间沉默食欲素/下丘脑分泌素神经元可诱导小鼠慢波睡眠
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Tomomi Tsunematsu;Sawako Tabuchi;Edward S. Boyden;Kenji F. Tanaka;Akihiro Yamanaka - 通讯作者:
Akihiro Yamanaka
Edward S. Boyden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edward S. Boyden', 18)}}的其他基金
Mechanisms of pathology and neuronal hyperactivity in a memory circuit in Alzheimer's disease
阿尔茨海默病记忆回路的病理学和神经元过度活跃机制
- 批准号:
10487389 - 财政年份:2021
- 资助金额:
$ 57.4万 - 项目类别:
Mechanisms of pathology and neuronal hyperactivity in a memory circuit in Alzheimer's disease
阿尔茨海默病记忆回路的病理学和神经元过度活跃机制
- 批准号:
10663344 - 财政年份:2021
- 资助金额:
$ 57.4万 - 项目类别:
Multiplexed Nanoscale Protein Mapping Through Expansion Microscopy and Immuno-SABER
通过膨胀显微镜和免疫 SABRE 进行多重纳米级蛋白质图谱
- 批准号:
10088537 - 财政年份:2020
- 资助金额:
$ 57.4万 - 项目类别:
High-throughput approaches to local and long-range synaptic connectivity
局部和远程突触连接的高通量方法
- 批准号:
10025780 - 财政年份:2020
- 资助金额:
$ 57.4万 - 项目类别:
RNA Scaffolds for Cell Specific Multiplexed Neural Observation
用于细胞特异性多重神经观察的 RNA 支架
- 批准号:
9981014 - 财政年份:2017
- 资助金额:
$ 57.4万 - 项目类别:
Scalable Cell- and Circuit-Targeted Electrophysiology
可扩展的细胞和电路靶向电生理学
- 批准号:
9893932 - 财政年份:2017
- 资助金额:
$ 57.4万 - 项目类别:
High-Performance Imaging Through Scattering Living Tissue
通过散射活组织进行高性能成像
- 批准号:
9369530 - 财政年份:2017
- 资助金额:
$ 57.4万 - 项目类别:
High-Performance Imaging Through Scattering Living Tissue
通过散射活组织进行高性能成像
- 批准号:
9978808 - 财政年份:2017
- 资助金额:
$ 57.4万 - 项目类别:
相似海外基金
University of Aberdeen and Vertebrate Antibodies Limited KTP 23_24 R1
阿伯丁大学和脊椎动物抗体有限公司 KTP 23_24 R1
- 批准号:
10073243 - 财政年份:2024
- 资助金额:
$ 57.4万 - 项目类别:
Knowledge Transfer Partnership
Role of Natural Antibodies and B1 cells in Fibroproliferative Lung Disease
天然抗体和 B1 细胞在纤维增生性肺病中的作用
- 批准号:
10752129 - 财政年份:2024
- 资助金额:
$ 57.4万 - 项目类别:
CAREER: Next-generation protease inhibitor discovery with chemically diversified antibodies
职业:利用化学多样化的抗体发现下一代蛋白酶抑制剂
- 批准号:
2339201 - 财政年份:2024
- 资助金额:
$ 57.4万 - 项目类别:
Continuing Grant
Isolation and characterisation of monoclonal antibodies for the treatment or prevention of antibiotic resistant Acinetobacter baumannii infections
用于治疗或预防抗生素耐药鲍曼不动杆菌感染的单克隆抗体的分离和表征
- 批准号:
MR/Y008693/1 - 财政年份:2024
- 资助金额:
$ 57.4万 - 项目类别:
Research Grant
Discovery of novel nodal antibodies in the central nervous system demyelinating diseases and elucidation of the mechanisms through an optic nerve demyelination model
发现中枢神经系统脱髓鞘疾病中的新型节点抗体并通过视神经脱髓鞘模型阐明其机制
- 批准号:
23K14783 - 财政年份:2023
- 资助金额:
$ 57.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of the mechanisms controlling the physicochemical properties and functions of supercharged antibodies and development of their applications
阐明控制超电荷抗体的理化性质和功能的机制及其应用开发
- 批准号:
23KJ0394 - 财政年份:2023
- 资助金额:
$ 57.4万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Developing first-in-class aggregation-specific antibodies for a severe genetic neurological disease
开发针对严重遗传神经系统疾病的一流聚集特异性抗体
- 批准号:
10076445 - 财政年份:2023
- 资助金额:
$ 57.4万 - 项目类别:
Grant for R&D
PLA2G2D Antibodies for Cancer Immunotherapy
用于癌症免疫治疗的 PLA2G2D 抗体
- 批准号:
10699504 - 财政年份:2023
- 资助金额:
$ 57.4万 - 项目类别:
Genetic adjuvants to elicit neutralizing antibodies against HIV
基因佐剂可引发抗艾滋病毒中和抗体
- 批准号:
10491642 - 财政年份:2023
- 资助金额:
$ 57.4万 - 项目类别:
Novel Immunogens to Elicit Broadly Cross-reactive Antibodies That Target the Hemagglutinin Head Trimer Interface
新型免疫原可引发针对血凝素头三聚体界面的广泛交叉反应抗体
- 批准号:
10782567 - 财政年份:2023
- 资助金额:
$ 57.4万 - 项目类别: