Expansion Microscopy
膨胀显微镜
基本信息
- 批准号:9301863
- 负责人:
- 金额:$ 57.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-15 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAntibodiesAxonBindingBiologicalBiologyBiotechnologyBrainCaenorhabditis elegansCellsChemicalsChemistryClinicalDNADimensionsDiseaseEducational workshopEngineeringEquipmentFluorescent in Situ HybridizationGelGenerationsGrantImageImageryIndividualInvestigationIsotropyLabelLearningLipidsManuscriptsMechanicsMethodsMicroscopeMicroscopyMolecularNatureNervous system structureNeurosciencesNucleic AcidsOpticsOrganOrganismPancreasPatternPolymersProteinsProtocols documentationPublishingRNAResearchResolutionRunningSamplingScienceSliceSpecimenStructureSynapsesTechnologyTestingTherapeuticThickTimeTissue imagingTissuesValidationVirusWaterZebrafishcellular imagingcomplex biological systemsdesignfluorophoreinsightinterestlenslight microscopymechanical propertiesmolecular scalenanoscalenovelnovel strategiestechnology developmenttool
项目摘要
Many questions in biology and neuroscience would benefit greatly from a technology that enabled molecular
information (e.g., the identities of specific nucleic acids and proteins) to be imaged throughout preserved 3-D
specimens (e.g., brain circuits), with nanoscale precision. Accordingly, we developed a fundamentally new
approach, published in Science in 2015: in contrast to earlier methods of magnification in light microscopy,
which rely on lenses to optically magnify images of cells and tissues, we physically magnify preserved
specimens. By synthesizing a swellable polyelectrolyte gel directly within a specimen, mechanically
homogenizing the specimen, then dialyzing in water, we could expand tissues by ~4.5x in linear dimension.
This method could separate molecules located within a diffraction-limited volume to distances great enough to
be resolved with conventional microscopes, resulting in an effective resolution of ~70 nm. We call this novel
method expansion microscopy (ExM). Since then, we have made the technology easier to use, creating a
version of ExM which we call proExM (protein retention ExM) that uses commercially available chemicals to
directly anchor genetically encoded fluorophores or antibody-borne fluorophores to the swellable gel, and
validating its ability to preserve nanoscale features in a variety of tissues (accepted at Nature Biotechnology)
and extended ExM to the anchoring and expansion of RNA molecules away from one another for nanoscale
RNA visualization, which we call ExFISH (accepted at Nature Methods). There is great pent-up demand for a
method of nanoscale imaging for extended 3-D specimens, especially one that requires no specialized
equipment; we host visitors weekly in our group at MIT to come and learn and practice ExM, and with the
Janelia Research Campus we will run a workshop to teach ExM hands-on in August 2016. Given the potential
for ExM to solve many problems in neuroscience, we now propose to increase its power and versatility.
Specifically, we will (Aim 1) develop optimized forms of ExM for difficult specimens (such as C. elegans), as
well as strategies for single-sample validation (by creating “physical scalebars” within samples), (Aim 2) invent
new chemistries for expanding specimens by 20x or 80x in linear dimension, enabling ~15 nm and ~3 nm
effective resolutions respectively, and (Aim 3) extend ExM anchoring chemistries for the visualization of lipids
and DNA, as well as combinations of biomolecules (e.g., seeing proteins, DNA, and RNA all at once). Our
project will result in tools of great applicability in neuroscience, as well as throughout biology. We propose a
fast-paced, 4 year technology development grant that will result in tools that will enable a large number of
scientific problems to be analyzed. We will distribute all tools as freely as possible, and teach usage thereof.
生物学和神经科学方面的许多问题将从启用分子的技术中受益匪浅
信息(例如,特定核酸和蛋白质的身份)将在整个保存的3-D中成像
标本(例如,脑电路),具有纳米级精度。根据,我们开发了一种从根本上开发的
方法于2015年发表在科学上:与光学显微镜中的早期放大方法相反,
依靠镜片光学地放大细胞和组织的图像,我们物理放大了。
标本。通过直接在样品中合成可膨胀的聚电解质凝胶,机械地
将样品匀浆,然后在水中进行透析,我们可以在线性尺寸上扩展组织约4.5倍。
该方法可以将位于衍射限量的体积内的分子分离到足够好的距离
用常规显微镜解决,从而有效分辨率约为70 nm。我们称这本小说
方法扩展显微镜(EXM)。从那以后,我们使技术更易于使用,创建了
EXM的版本我们称为Proexm(蛋白质保留EXM),该版本使用市售化学品
直接锚定为荧光团或抗体传播的荧光团锚固,可膨胀凝胶,然后
验证其在各种组织中保留纳米级特征的能力(自然界接受生物技术)
并将EXM扩展到RNA分子的锚定和膨胀,以互相纳米级
RNA可视化,我们称之为exfish(在自然方法上接受)。有很大的压抑需求
扩展3-D标本的纳米级成像方法,尤其是不需要专业的标本
设备;我们每周在麻省理工学院的小组中接待访客,以学习和练习EXM,并与
Janelia Research Campus我们将在2016年8月举办一个研讨会来教EXM动手。
为了使EXM解决神经科学中的许多问题,我们现在建议提高其功能和多功能性。
具体而言,我们(AIM 1)将为困难标本(例如秀丽隐杆线虫)开发优化的EXM形式,例如
以及单样本验证的策略(通过在样本中创建“物理规模杆”),(AIM 2)发明
在线性尺寸上将标本扩展到20倍或80倍的新化学物质,可实现〜15 nm和〜3 nm
分别有效的分辨率和(AIM 3)扩展EXM锚定化学家以可视化脂质
和DNA,以及生物分子的组合(例如,一次观察蛋白质,DNA和RNA)。我们的
项目将导致神经科学以及整个生物学具有极大适用性的工具。我们提出了一个
快节奏的4年技术开发赠款,该赠款将导致工具可实现大量
待分析的科学问题。我们将尽可能免费地分发所有工具,并进行其教学用法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edward S. Boyden其他文献
Procédés et compositions destinés à diminuer la douleur chronique
慢性悲伤的进程和作曲
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Edward S. Boyden;J. Eisenach;Kenneth P. Greenberg;Alan Horsager;Benjamin C. Matteo;Douglas G. Ririe;Christian T. Wentz - 通讯作者:
Christian T. Wentz
Canal à cations activés par la lumière et ses utilisations
运河 à 阳离子 activés par la lumière et ses utilizations
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Edward S. Boyden;Karl Deisseroth - 通讯作者:
Karl Deisseroth
Contribution of the orbitofrontal cortex to inference based on specific stimulus-reward relationships
眶额皮质对基于特定刺激-奖励关系的推理的贡献
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Masaaki Ogawa;Seiya Ishino;Kota Tokuoka;Tadashi Isa;Brian D. Allen;Amy S. Chuong ;Edward S. Boyden;Naoya Oishi;Im Snaghun;Takeshi Yamada - 通讯作者:
Takeshi Yamada
43.5 PIONEERING TOMORROW’S BRAIN RESEARCH TECHNOLOGIES
- DOI:
10.1016/j.jaac.2021.07.273 - 发表时间:
2021-10-01 - 期刊:
- 影响因子:
- 作者:
Edward S. Boyden - 通讯作者:
Edward S. Boyden
Optogenetic manipulation of the activity of orexin neurons controls sleep/wakefulness state in mice
光遗传学操纵食欲素神经元的活动控制小鼠的睡眠/觉醒状态
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
常松友美;Edward S. Boyden;富永真琴;山中章弘;Tomomi Tsunematsu - 通讯作者:
Tomomi Tsunematsu
Edward S. Boyden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edward S. Boyden', 18)}}的其他基金
Mechanisms of pathology and neuronal hyperactivity in a memory circuit in Alzheimer's disease
阿尔茨海默病记忆回路的病理学和神经元过度活跃机制
- 批准号:
10487389 - 财政年份:2021
- 资助金额:
$ 57.4万 - 项目类别:
Mechanisms of pathology and neuronal hyperactivity in a memory circuit in Alzheimer's disease
阿尔茨海默病记忆回路的病理学和神经元过度活跃机制
- 批准号:
10663344 - 财政年份:2021
- 资助金额:
$ 57.4万 - 项目类别:
Multiplexed Nanoscale Protein Mapping Through Expansion Microscopy and Immuno-SABER
通过膨胀显微镜和免疫 SABRE 进行多重纳米级蛋白质图谱
- 批准号:
10088537 - 财政年份:2020
- 资助金额:
$ 57.4万 - 项目类别:
High-throughput approaches to local and long-range synaptic connectivity
局部和远程突触连接的高通量方法
- 批准号:
10025780 - 财政年份:2020
- 资助金额:
$ 57.4万 - 项目类别:
RNA Scaffolds for Cell Specific Multiplexed Neural Observation
用于细胞特异性多重神经观察的 RNA 支架
- 批准号:
9981014 - 财政年份:2017
- 资助金额:
$ 57.4万 - 项目类别:
High-Performance Imaging Through Scattering Living Tissue
通过散射活组织进行高性能成像
- 批准号:
9369530 - 财政年份:2017
- 资助金额:
$ 57.4万 - 项目类别:
High-Performance Imaging Through Scattering Living Tissue
通过散射活组织进行高性能成像
- 批准号:
9978808 - 财政年份:2017
- 资助金额:
$ 57.4万 - 项目类别:
Scalable Cell- and Circuit-Targeted Electrophysiology
可扩展的细胞和电路靶向电生理学
- 批准号:
9893932 - 财政年份:2017
- 资助金额:
$ 57.4万 - 项目类别:
相似国自然基金
募集HBV抗体用于肿瘤免疫治疗的分子设计及作用机制
- 批准号:22377041
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
双特异性抗体囊泡对胞内细菌感染的免疫综合机制研究
- 批准号:82304366
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
四种停用喹诺酮类药物高分辨力单克隆抗体的精准制备及其识别机制研究
- 批准号:32373059
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
DHEA协同别构纳米抗体通过ADGRG2调控男性生殖功能障碍的作用及机制
- 批准号:82371629
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
靶向DLL3和γδ T细胞的双特异抗体对小细胞肺癌的免疫治疗活性研究
- 批准号:32300783
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A three dimensional multimodal cellular connectivity atlas of the mouse hypothalamus
小鼠下丘脑三维多模态细胞连接图谱
- 批准号:
10719606 - 财政年份:2023
- 资助金额:
$ 57.4万 - 项目类别:
Unraveling the Superficial White Matter of the Primate Brain: Tracer-Based Histology and dMRI Tractography Validation
解开灵长类动物大脑的浅表白质:基于示踪剂的组织学和 dMRI 纤维束成像验证
- 批准号:
10650392 - 财政年份:2022
- 资助金额:
$ 57.4万 - 项目类别:
Understanding Amyloid Pathology - Multiomic Activity Imaging of Plaque Formation Dynamics (AmyMAP)
了解淀粉样蛋白病理学 - 斑块形成动力学的多组学活性成像 (AmyMAP)
- 批准号:
10693962 - 财政年份:2022
- 资助金额:
$ 57.4万 - 项目类别:
Modulating miR-218 in human motor neurons using assembloids
使用组合体调节人类运动神经元中的 miR-218
- 批准号:
10525638 - 财政年份:2022
- 资助金额:
$ 57.4万 - 项目类别:
Peroxisomal fatty acid metabolism in genetic and age-related disorders
遗传和年龄相关疾病中的过氧化物酶体脂肪酸代谢
- 批准号:
10559614 - 财政年份:2022
- 资助金额:
$ 57.4万 - 项目类别: