Expansion Microscopy
膨胀显微镜
基本信息
- 批准号:10609512
- 负责人:
- 金额:$ 60.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-15 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:BindingBiologicalBiological PreservationBiologyBrain MappingCellsCellular StructuresChemicalsCommunitiesComplexConsumptionCryoelectron MicroscopyDemocracyDevelopmentDiamondDiseaseEducational workshopElectron MicroscopyEquipmentFluorescent ProbesFree RadicalsGoalsGrantHigh temperature of physical objectHumanHydrogelsImageInternetLabelLipidsMapsMedicalMethodsMicroscopeMicroscopyNucleic AcidsPaperParaffin EmbeddingPersonsPolymersPrintingProcessProteinsProtocols documentationRNAReagentResearchResolutionResource SharingSamplingShapesSpecimenSpecimen HandlingSpeedSwellingTechnologyTimeTissuesTrainingVisualizationWaterWorkbiological systemscell typecellular imagingcold temperaturehuman tissueimaging modalityinsightinventionnanoimagingnanoscalenew therapeutic targetpreservationscale upskillssuperresolution microscopytechnology developmentultra high resolution
项目摘要
Biomolecules, such as nucleic acids, lipids, and proteins, are nanoscale in size, and often localized with
nanoscale precision with respect to each other, and to cellular structures. Analyzing the nanoscale
configurations of biomolecules in cells and tissues is critical for understanding how they work, as well as how
they go wrong in disease states. Not surprisingly, much effort has been devoted to inventing methods (e.g.,
super-resolution microscopy, cryo-electron microscopy) for nanoimaging biological specimens, primarily in their
preserved state. However, all of these technologies require expensive equipment, and specialized skillsets.
Given that all biological systems involve nanoscale building blocks and their interactions, a major question is
whether nanoimaging can be democratized, so that anyone could do it, without expensive equipment or
extensive training. This grant is a first competitive renewal of our group’s primary grant that supports the
development of a technology that we think could potentially meet this goal. We recently announced that in
contrast to all previous methods for imaging preserved biological specimens, which magnify their images,
specimens could themselves be physically magnified. This technology, which we call expansion microscopy
(ExM), involves equipping key biomolecules or labels within a specimen with anchoring molecules, then
densely and evenly permeating the biological specimen with a mesh of swellable polymer (that binds to the
anchors, thus anchoring key biomolecules or labels to the polymer), softening the specimen to disrupt
endogenous molecular interactions, and adding water to swell the polymer, which in turn pulls the
biomolecules or labels apart from each other. The process is even down to the nanoscale, and thus enables
nanoimaging of cells and tissues on ordinary microscopes. In addition, several recent papers point to an
additional advantage of ExM – by pulling biomolecules apart from each other, you decrowd them for better
labeling by fluorescent probes, sometimes turning invisible biomolecules into visible ones. ExM is already in
use by many hundreds of research groups, with over 250 experimental preprints and papers appearing to date.
Here we propose to make ExM simpler, more powerful, faster, more applicable to human samples, and more
precise in resolution. Specifically, we will (Aim 1) create a unified, simple, high-speed ExM protocol; (Aim 2)
create a unified, simple, high-speed, single-step 20x expansion protocol; (Aim 3) optimize the new unified,
simple, and high-speed ExM protocols for human tissues. We propose a fast-paced, 4 year, technology
development grant, with the goal of delivering, to the entire biology and medical community, a truly
democratized toolbox that enables anyone to do nanoimaging. We will share all protocols as freely as possible
both on the web and through protocol papers, as well as through hosting people at hands-on workshops.
生物分子,如核酸、脂质和蛋白质,在尺寸上是纳米级的,并且通常被局部化,
纳米级的精确度,以及细胞结构。分析纳米尺度
细胞和组织中生物分子的构型对于理解它们如何工作以及它们如何
它们在疾病状态下会出错。毫不奇怪,已经投入了很多努力来发明方法(例如,
超分辨率显微镜、低温电子显微镜),用于对生物样本进行纳米成像,主要是在其
保存状态然而,所有这些技术都需要昂贵的设备和专业技能。
鉴于所有生物系统都涉及纳米级的构建模块及其相互作用,一个主要问题是
纳米成像是否可以普及,让任何人都可以做,而不需要昂贵的设备,
广泛的训练。这项赠款是我们集团的主要赠款的第一次竞争性更新,
我们认为有可能实现这一目标的技术。我们最近宣布,在
与用于对保存的生物样本进行成像的所有先前方法相比,这些方法放大了它们的图像,
标本本身可以被物理放大。这项技术,我们称之为扩张显微镜
(ExM),涉及在样本内配备锚定分子的关键生物分子或标签,然后
用可溶胀聚合物网(其结合到生物样品上)致密且均匀地渗透生物样品,
锚,从而将关键的生物分子或标记锚定到聚合物上),软化样本以破坏
内源性分子相互作用,并加入水以溶胀聚合物,这反过来又拉动聚合物。
生物分子或标记彼此分开。该工艺甚至可以达到纳米级,因此能够
在普通显微镜上对细胞和组织进行纳米成像。此外,最近的几篇论文指出,
ExM的另一个优点-通过将生物分子彼此分开,
用荧光探针标记,有时把看不见的生物分子变成可见的。ExM已经在
被数百个研究小组使用,迄今已有250多篇实验性预印本和论文。
在这里,我们建议使ExM更简单,更强大,更快,更适用于人类样本,以及更多
分辨率精确。具体来说,我们将(目标1)创建一个统一的,简单的,高速的ExM协议;(目标2)
创建统一、简单、高速、单步20倍扩展协议;(目标3)优化新的统一,
用于人体组织的简单高速ExM协议。我们提出了一个快节奏,4年,技术
发展赠款,目标是向整个生物学和医学界提供一个真正的
使任何人都能进行纳米成像的民主化工具箱。我们将尽可能自由地分享所有协议
在网上和通过议定书文件以及通过在实践研讨会上接待人们。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edward S. Boyden其他文献
Q&A: Expansion microscopy
- DOI:
10.1186/s12915-017-0393-3 - 发表时间:
2017-06-19 - 期刊:
- 影响因子:4.500
- 作者:
Ruixuan Gao;Shoh M. Asano;Edward S. Boyden - 通讯作者:
Edward S. Boyden
Canal à cations activés par la lumière et ses utilisations
运河 à 阳离子 activés par la lumière et ses utilizations
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Edward S. Boyden;Karl Deisseroth - 通讯作者:
Karl Deisseroth
Procédés et compositions destinés à diminuer la douleur chronique
慢性悲伤的进程和作曲
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Edward S. Boyden;J. Eisenach;Kenneth P. Greenberg;Alan Horsager;Benjamin C. Matteo;Douglas G. Ririe;Christian T. Wentz - 通讯作者:
Christian T. Wentz
A multi-modal single-cell and spatial expression map of metastatic breast cancer biopsies across clinicopathological features
转移性乳腺癌活检的多模态单细胞和空间表达图谱,涵盖临床病理特征
- DOI:
10.1038/s41591-024-03215-z - 发表时间:
2024-10-30 - 期刊:
- 影响因子:50.000
- 作者:
Johanna Klughammer;Daniel L. Abravanel;Åsa Segerstolpe;Timothy R. Blosser;Yury Goltsev;Yi Cui;Daniel R. Goodwin;Anubhav Sinha;Orr Ashenberg;Michal Slyper;Sébastien Vigneau;Judit Jané‐Valbuena;Shahar Alon;Chiara Caraccio;Judy Chen;Ofir Cohen;Nicole Cullen;Laura K. DelloStritto;Danielle Dionne;Janet Files;Allison Frangieh;Karla Helvie;Melissa E. Hughes;Stephanie Inga;Abhay Kanodia;Ana Lako;Colin MacKichan;Simon Mages;Noa Moriel;Evan Murray;Sara Napolitano;Kyleen Nguyen;Mor Nitzan;Rebecca Ortiz;Miraj Patel;Kathleen L. Pfaff;Caroline B. M. Porter;Asaf Rotem;Sarah Strauss;Robert Strasser;Aaron R. Thorner;Madison Turner;Isaac Wakiro;Julia Waldman;Jingyi Wu;Jorge Gómez Tejeda Zañudo;Diane Zhang;Nancy U. Lin;Sara M. Tolaney;Eric P. Winer;Edward S. Boyden;Fei Chen;Garry P. Nolan;Scott J. Rodig;Xiaowei Zhuang;Orit Rozenblatt-Rosen;Bruce E. Johnson;Aviv Regev;Nikhil Wagle - 通讯作者:
Nikhil Wagle
Long time silencing of orexin/hypocretin neurons using archaerhodopsin induces slow-wave sleep in mice
使用古视紫红质长时间沉默食欲素/下丘脑分泌素神经元可诱导小鼠慢波睡眠
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Tomomi Tsunematsu;Sawako Tabuchi;Edward S. Boyden;Kenji F. Tanaka;Akihiro Yamanaka - 通讯作者:
Akihiro Yamanaka
Edward S. Boyden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edward S. Boyden', 18)}}的其他基金
Mechanisms of pathology and neuronal hyperactivity in a memory circuit in Alzheimer's disease
阿尔茨海默病记忆回路的病理学和神经元过度活跃机制
- 批准号:
10487389 - 财政年份:2021
- 资助金额:
$ 60.53万 - 项目类别:
Mechanisms of pathology and neuronal hyperactivity in a memory circuit in Alzheimer's disease
阿尔茨海默病记忆回路的病理学和神经元过度活跃机制
- 批准号:
10663344 - 财政年份:2021
- 资助金额:
$ 60.53万 - 项目类别:
Multiplexed Nanoscale Protein Mapping Through Expansion Microscopy and Immuno-SABER
通过膨胀显微镜和免疫 SABRE 进行多重纳米级蛋白质图谱
- 批准号:
10088537 - 财政年份:2020
- 资助金额:
$ 60.53万 - 项目类别:
High-throughput approaches to local and long-range synaptic connectivity
局部和远程突触连接的高通量方法
- 批准号:
10025780 - 财政年份:2020
- 资助金额:
$ 60.53万 - 项目类别:
RNA Scaffolds for Cell Specific Multiplexed Neural Observation
用于细胞特异性多重神经观察的 RNA 支架
- 批准号:
9981014 - 财政年份:2017
- 资助金额:
$ 60.53万 - 项目类别:
High-Performance Imaging Through Scattering Living Tissue
通过散射活组织进行高性能成像
- 批准号:
9369530 - 财政年份:2017
- 资助金额:
$ 60.53万 - 项目类别:
High-Performance Imaging Through Scattering Living Tissue
通过散射活组织进行高性能成像
- 批准号:
9978808 - 财政年份:2017
- 资助金额:
$ 60.53万 - 项目类别:
Scalable Cell- and Circuit-Targeted Electrophysiology
可扩展的细胞和电路靶向电生理学
- 批准号:
9893932 - 财政年份:2017
- 资助金额:
$ 60.53万 - 项目类别:
相似海外基金
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
- 批准号:
DP240102658 - 财政年份:2024
- 资助金额:
$ 60.53万 - 项目类别:
Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
- 批准号:
EP/Y036654/1 - 财政年份:2024
- 资助金额:
$ 60.53万 - 项目类别:
Research Grant
Open Access Block Award 2024 - Marine Biological Association
2024 年开放获取区块奖 - 海洋生物学协会
- 批准号:
EP/Z532538/1 - 财政年份:2024
- 资助金额:
$ 60.53万 - 项目类别:
Research Grant
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
- 批准号:
2335999 - 财政年份:2024
- 资助金额:
$ 60.53万 - 项目类别:
Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
- 批准号:
2334679 - 财政年份:2024
- 资助金额:
$ 60.53万 - 项目类别:
Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
- 批准号:
2401507 - 财政年份:2024
- 资助金额:
$ 60.53万 - 项目类别:
Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
- 批准号:
2243955 - 财政年份:2024
- 资助金额:
$ 60.53万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 60.53万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 60.53万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 60.53万 - 项目类别:
Standard Grant