Project 2: Physical Mechanisms and Clinical Implications of Mechano-transduction
项目2:力传导的物理机制和临床意义
基本信息
- 批准号:9263918
- 负责人:
- 金额:$ 32.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:ActinsAffectAlpha CellAreaBehaviorBiochemicalBiologicalBiological MarkersCell ProliferationCell Surface ReceptorsCell membraneCell surfaceCellsCellular biologyCharacteristicsChemicalsClinicalComputer SimulationCuesDisease ProgressionEngineeringFeedbackFibrosisFutureG-substrateGTP-Binding ProteinsGene ExpressionGene Expression AlterationGoalsGrowth FactorHepatocyteHeterogeneityInflammationLengthLinkLiverMalignant neoplasm of liverMass Spectrum AnalysisMechanicsMediatingMembraneMethodsMicroscopyModelingMolecularMonitorMonomeric GTP-Binding ProteinsNuclearOncologistOutcomePathway interactionsPremalignantPrimary carcinoma of the liver cellsProcessRNARecruitment ActivityResearch PersonnelResolutionRheologyScientistSignal PathwaySignal TransductionSignaling ProteinSpecificitySpectrum AnalysisStressStromal CellsSystems BiologyTestingTissuesTranslatingbasecell typedesignexperimental studyhigh dimensionalitylive cell microscopymagnetic beadsmechanotransductionmembrane modelmigrationmolecular scalenanoscaleneoplastic cellnovelphysical propertyphysical sciencepressurereceptorresponsestellate celltheoriestherapeutic targettraffickingtumor microenvironmenttumor progressiontumorigenesis
项目摘要
Abstract
Project 2: Physical Mechanisms and Clinical Implications of Mechano-transduction in Hepatocellular
Carcinoma Tumor Microenvironment.
In Project 2, a team of investigators from the physical sciences, engineering, and cell biology will interact
closely with hepatologists and liver oncologists through the clinical-core, and theorists through the theory-core.
We will advance and test a new hypothesis for mechano-transduction in the hepatocellular carcinoma (HCC)
microenvironment. We hypothesize that an entire membrane signalosome will translate changes in the
physical microenvironment into alterations in membrane-mediated regulatory processes such as receptor
trafficking and membrane-cortex interactions. This in turn will alter the specificity of signaling pathways and
influence cell fate. Theory/membrane modeling will advance hypotheses on how physical mechanisms govern
biological (cellular) behavior, and will direct design of physical parameters tunable in experiments. Super
resolution microscopy will be used to track nanoscale assemblies, and force spectroscopy and microrheology
will be used to determine static/dynamic responses of the cell membrane and membrane cortex interactions. In
parallel, high-dimensional kinome profiling and single-cell gene expression will link these nanoscopic
mechanisms with cellular decisions. Outcomes of these experiments will quantitatively and mechanistically
relate the physical microenvironment in HCC to dictation of cell fate in cancer progression, as well as providing
iterative feedback to the computational models for refinement of mechanisms, formulate new hypotheses.
Specifically, the Aims of project 2 will establish quantitative and mechanistic relationships between the physical
characteristics of the HCC microenvironment (namely membrane tension, matrix stiffness, substrate stiffness,
and uniaxial compressive stress) and membrane-mediated signaling mechanisms, namely how receptor
trafficking and membrane cortex interactions alter specificity of downstream of growth factor and G-protein
mediated signals to regulate gene expression and cell fate. Our studies in Project 2 will also probe how static
and dynamic responses of the cell membrane and membrane-cortex interactions in normal hepatocytes and
stromal cells are altered by changes in the physical microenvironment variables relevant for HCC. Our project
on mechano-transduction in HCC at the cellular scale is closely aligned with the goals of Project 1, namely
HCC disease progression at the tissue scale, and those of Project 3, namely nuclear mechanics and HCC
oncogenesis at the subcellular scale. We expect that the new physical-chemical paradigms governing HCC
emerging from this project will inform and impact future HCC therapies. In particular, our results provide
multidimensional, multiphysics characterization of subcellular (membrane, cortex, signals, gene-expression)
alterations in response to changes in the microenvironment variables, some at single-cell resolution. The
findings in Project 2 compliment those in Project 1, but extend the analyses and outcomes at the cellular to
sub-cellular scale, molecular scale, and help identify physical biomarkers at this finer length-scale. Kinome
profiling in Project 2 should also link our physical perspective to possible combinations of therapeutic targets.
摘要
项目2:肝细胞机械力转导的物理机制和临床意义
肿瘤微环境。
在项目2中,来自物理科学、工程学和细胞生物学的研究人员将进行互动,
通过临床核心与肝病学家和肝肿瘤学家紧密联系,通过理论核心与理论家紧密联系。
我们将提出并验证一个新的关于肝细胞癌(HCC)中机械传导的假说
微环境我们假设,整个膜信号体将翻译的变化,
物理微环境转化为膜介导的调节过程的改变,
运输和膜-皮质相互作用。这反过来又会改变信号通路的特异性,
影响细胞命运。理论/膜模型将推进关于物理机制如何支配的假设
生物(细胞)行为,并将直接设计的物理参数可调的实验。超级
分辨率显微镜将用于跟踪纳米级组件,力谱和微观流变学
将用于确定细胞膜和膜皮质相互作用的静态/动态响应。在
平行的,高维的激酶组分析和单细胞基因表达将这些纳米级的
与细胞决策的机制。这些实验的结果将定量和机械地
将HCC中的物理微环境与癌症进展中细胞命运的决定联系起来,
迭代反馈到计算模型中,以改进机制,制定新的假设。
具体而言,项目2的目标将建立物理之间的定量和机械关系,
HCC微环境的特性(即膜张力,基质刚度,基底刚度,
和单轴压应力)和膜介导的信号传导机制,即how受体
运输和膜皮质相互作用改变生长因子和G蛋白下游的特异性
介导的信号来调节基因表达和细胞命运。我们在项目2中的研究还将探讨静态
以及正常肝细胞中细胞膜和膜-皮质相互作用的动态反应,
基质细胞因HCC相关的物理微环境变量的变化而改变。我们的项目
在细胞尺度上对HCC中机械转导的研究与项目1的目标密切相关,即
组织规模的HCC疾病进展,以及项目3的进展,即核力学和HCC
在亚细胞尺度上的肿瘤发生。我们希望新的物理化学范式管理HCC
该项目的出现将为未来的HCC治疗提供信息并产生影响。特别是,我们的研究结果提供了
亚细胞的多维、多物理表征(膜、皮质、信号、基因表达)
改变响应于微环境变量的变化,一些在单细胞分辨率。的
项目2中的研究结果补充了项目1中的研究结果,但扩展了细胞的分析和结果,
亚细胞尺度,分子尺度,并帮助在这个更精细的长度尺度上识别物理生物标志物。激酶组
项目2中的分析也应该将我们的物理观点与治疗靶点的可能组合联系起来。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ravi Radhakrishnan其他文献
Ravi Radhakrishnan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ravi Radhakrishnan', 18)}}的其他基金
Project 2: Physical Mechanisms and Clinical Implications of Mechano-transduction
项目2:力传导的物理机制和临床意义
- 批准号:
9151964 - 财政年份:
- 资助金额:
$ 32.14万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 32.14万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 32.14万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 32.14万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 32.14万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 32.14万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 32.14万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 32.14万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 32.14万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 32.14万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 32.14万 - 项目类别:
Grant-in-Aid for Early-Career Scientists