Project 2: Physical Mechanisms and Clinical Implications of Mechano-transduction
项目2:力传导的物理机制和临床意义
基本信息
- 批准号:9151964
- 负责人:
- 金额:$ 32.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:ActinsAffectAreaBackBehaviorBiochemicalBiologicalBiological MarkersCell ProliferationCell Surface ReceptorsCell membraneCell surfaceCellsCellular biologyCharacteristicsChemicalsClinicalComputer SimulationCuesDisease ProgressionEngineeringFeedbackFibrosisFutureGTP-Binding ProteinsGene ExpressionGene Expression AlterationGoalsGrowthHepatocyteHeterogeneityInflammationLengthLinkLiverMalignant neoplasm of liverMass Spectrum AnalysisMechanicsMediatingMembraneMembrane Protein TrafficMethodsMicroscopyModelingMolecularMonitorMonomeric GTP-Binding ProteinsNuclearOncologistOutcomePathway interactionsPremalignantPrimary carcinoma of the liver cellsProcessRNAResearch PersonnelResolutionRheologyScientistSignal PathwaySignal TransductionSpecificitySpectrum AnalysisStressStromal CellsSystems BiologyTestingTissuesTranslatingabstractingbasecell typecellular engineeringdesignfeedinglive cell microscopymagnetic beadsmembrane modelmigrationmolecular scalenanoscaleneoplastic cellnovelphysical propertyphysical sciencepressurereceptorresearch studyresponsestellate celltheoriestherapeutic targettraffickingtumor microenvironmenttumor progressiontumorigenesis
项目摘要
Abstract
Project 2: Physical Mechanisms and Clinical Implications of Mechano-transduction in Hepatocellular
Carcinoma Tumor Microenvironment.
In Project 2, a team of investigators from the physical sciences, engineering, and cell biology will interact
closely with hepatologists and liver oncologists through the clinical-core, and theorists through the theory-core.
We will advance and test a new hypothesis for mechano-transduction in the hepatocellular carcinoma (HCC)
microenvironment. We hypothesize that an entire membrane signalosome will translate changes in the
physical microenvironment into alterations in membrane-mediated regulatory processes such as receptor
trafficking and membrane-cortex interactions. This in turn will alter the specificity of signaling pathways and
influence cell fate. Theory/membrane modeling will advance hypotheses on how physical mechanisms govern
biological (cellular) behavior, and will direct design of physical parameters tunable in experiments. Super
resolution microscopy will be used to track nanoscale assemblies, and force spectroscopy and microrheology
will be used to determine static/dynamic responses of the cell membrane and membrane cortex interactions. In
parallel, high-dimensional kinome profiling and single-cell gene expression will link these nanoscopic
mechanisms with cellular decisions. Outcomes of these experiments will quantitatively and mechanistically
relate the physical microenvironment in HCC to dictation of cell fate in cancer progression, as well as providing
iterative feedback to the computational models for refinement of mechanisms, formulate new hypotheses.
Specifically, the Aims of project 2 will establish quantitative and mechanistic relationships between the physical
characteristics of the HCC microenvironment (namely membrane tension, matrix stiffness, substrate stiffness,
and uniaxial compressive stress) and membrane-mediated signaling mechanisms, namely how receptor
trafficking and membrane cortex interactions alter specificity of downstream of growth factor and G-protein
mediated signals to regulate gene expression and cell fate. Our studies in Project 2 will also probe how static
and dynamic responses of the cell membrane and membrane-cortex interactions in normal hepatocytes and
stromal cells are altered by changes in the physical microenvironment variables relevant for HCC. Our project
on mechano-transduction in HCC at the cellular scale is closely aligned with the goals of Project 1, namely
HCC disease progression at the tissue scale, and those of Project 3, namely nuclear mechanics and HCC
oncogenesis at the subcellular scale. We expect that the new physical-chemical paradigms governing HCC
emerging from this project will inform and impact future HCC therapies. In particular, our results provide
multidimensional, multiphysics characterization of subcellular (membrane, cortex, signals, gene-expression)
alterations in response to changes in the microenvironment variables, some at single-cell resolution. The
findings in Project 2 compliment those in Project 1, but extend the analyses and outcomes at the cellular to
sub-cellular scale, molecular scale, and help identify physical biomarkers at this finer length-scale. Kinome
profiling in Project 2 should also link our physical perspective to possible combinations of therapeutic targets.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ravi Radhakrishnan其他文献
Ravi Radhakrishnan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ravi Radhakrishnan', 18)}}的其他基金
Project 2: Physical Mechanisms and Clinical Implications of Mechano-transduction
项目2:力传导的物理机制和临床意义
- 批准号:
9263918 - 财政年份:
- 资助金额:
$ 32.64万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 32.64万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 32.64万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 32.64万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 32.64万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 32.64万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 32.64万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 32.64万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 32.64万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 32.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 32.64万 - 项目类别:
Studentship