Quantitative Modeling for Chromatin Regulation of Gene Expression in Cancer

癌症基因表达染色质调控的定量模型

基本信息

  • 批准号:
    9379863
  • 负责人:
  • 金额:
    $ 19.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Chromatin plays an essential role in transcriptional regulation. Chromatin-related genes are frequently mutated in cancers. Dissecting the functions of chromatin in gene regulation is important for understanding the molecular mechanisms of oncogenesis and tumor progression. As an experienced computational biologist with expertise on ChIP-seq bioinformatics and epigenetics, my research has focused on developing computational methodologies for high-throughput genomic data analysis and computational modeling on chromatin regulation of gene expression. With more independent research training in cancer biology, I will develop my research program on computational cancer epigenetics and develop an independent academic career. Recent studies have demonstrated the feasibility of targeting chromatin regulators for active open regions in the genome as novel therapeutics for cancer treatment. However, the context-specific substrates of chromatin regulators and the mechanisms underlying how chromatin regulates gene expression are largely unclear.. With the advent of next-generation sequencing based high-throughput genomic techniques including ChIP-seq, DNase-seq, and ATAC-seq, a large amount of for genomic profiling data became available, making it possible to systematically decipher the gene regulatory mechanisms with an integrative computational approach. The objective of this project is to develop novel quantitative and computational methodologies for studying epigenetic gene regulation and the functions of chromatin regulators in cancer. Specifically, we propose to develop integrative computational methods that leverage the abundant public ChIP-seq, DNase-seq, and ATAC-seq data for predicting functional regulatory elements and TFs. First (Aim 1), we will develop a method that predicts the functional enhancer elements and associated TFs given any gene set using public histone mark ChIP-seq data across multiple cell types. Second (Aim 2), we will develop a quantitative model to identify the nucleotide-resolution chromatin accessibility dynamics from paired-end DNase-seq or ATAC-seq data with correction of intrinsic biases in the data. Finally (Aim 3), we will integrate publicly available DNase- seq, ATAC-seq, and ChIP-seq data in a comprehensive database and systematically characterize the functions of chromatin regulators with a focus on EZH2 in a few cancer systems, including castration-resistant prostate cancer (CRPC) cells, and malignant peripheral nerve sheath tumors (MPNSTs). These computational methods complement existing bioinformatics methodologies and will have broad applications in the study of cancer epigenetics and gene regulation. The proposed research will fill the knowledge gap between oncogenic drivers and downstream gene expression program, and could provide mechanistic support for development of novel targeted therapeutics for cancer precision medicine.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chongzhi Zang其他文献

Chongzhi Zang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chongzhi Zang', 18)}}的其他基金

A multi-level bias correction model for bulk and single-cell CUT&Tag data
用于批量和单细胞切割的多级偏差校正模型
  • 批准号:
    10645980
  • 财政年份:
    2023
  • 资助金额:
    $ 19.24万
  • 项目类别:
Integrative computational models for functional epigenomics and transcriptional regulation
功能表观基因组学和转录调控的综合计算模型
  • 批准号:
    10005372
  • 财政年份:
    2019
  • 资助金额:
    $ 19.24万
  • 项目类别:
Integrative computational models for functional epigenomics and transcriptional regulation
功能表观基因组学和转录调控的综合计算模型
  • 批准号:
    10460972
  • 财政年份:
    2019
  • 资助金额:
    $ 19.24万
  • 项目类别:
Integrative computational models for functional epigenomics and transcriptional regulation
功能表观基因组学和转录调控的综合计算模型
  • 批准号:
    10228663
  • 财政年份:
    2019
  • 资助金额:
    $ 19.24万
  • 项目类别:
Integrative computational models for functional epigenomics and transcriptional regulation
功能表观基因组学和转录调控的综合计算模型
  • 批准号:
    10669742
  • 财政年份:
    2019
  • 资助金额:
    $ 19.24万
  • 项目类别:
Integrative computational models for functional epigenomics and transcriptional regulation
功能表观基因组学和转录调控的综合计算模型
  • 批准号:
    10809380
  • 财政年份:
    2019
  • 资助金额:
    $ 19.24万
  • 项目类别:
Quantitative Modeling for Chromatin Regulation of Gene Expression in Cancer
癌症基因表达染色质调控的定量模型
  • 批准号:
    9763334
  • 财政年份:
    2017
  • 资助金额:
    $ 19.24万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 19.24万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 19.24万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 19.24万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 19.24万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 19.24万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 19.24万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 19.24万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 19.24万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 19.24万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.24万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了