Quantitative Modeling for Chromatin Regulation of Gene Expression in Cancer

癌症基因表达染色质调控的定量模型

基本信息

  • 批准号:
    9763334
  • 负责人:
  • 金额:
    $ 19.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2019-09-02
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Chromatin plays an essential role in transcriptional regulation. Chromatin-related genes are frequently mutated in cancers. Dissecting the functions of chromatin in gene regulation is important for understanding the molecular mechanisms of oncogenesis and tumor progression. As an experienced computational biologist with expertise on ChIP-seq bioinformatics and epigenetics, my research has focused on developing computational methodologies for high-throughput genomic data analysis and computational modeling on chromatin regulation of gene expression. With more independent research training in cancer biology, I will develop my research program on computational cancer epigenetics and develop an independent academic career. Recent studies have demonstrated the feasibility of targeting chromatin regulators for active open regions in the genome as novel therapeutics for cancer treatment. However, the context-specific substrates of chromatin regulators and the mechanisms underlying how chromatin regulates gene expression are largely unclear.. With the advent of next-generation sequencing based high-throughput genomic techniques including ChIP-seq, DNase-seq, and ATAC-seq, a large amount of for genomic profiling data became available, making it possible to systematically decipher the gene regulatory mechanisms with an integrative computational approach. The objective of this project is to develop novel quantitative and computational methodologies for studying epigenetic gene regulation and the functions of chromatin regulators in cancer. Specifically, we propose to develop integrative computational methods that leverage the abundant public ChIP-seq, DNase-seq, and ATAC-seq data for predicting functional regulatory elements and TFs. First (Aim 1), we will develop a method that predicts the functional enhancer elements and associated TFs given any gene set using public histone mark ChIP-seq data across multiple cell types. Second (Aim 2), we will develop a quantitative model to identify the nucleotide-resolution chromatin accessibility dynamics from paired-end DNase-seq or ATAC-seq data with correction of intrinsic biases in the data. Finally (Aim 3), we will integrate publicly available DNase- seq, ATAC-seq, and ChIP-seq data in a comprehensive database and systematically characterize the functions of chromatin regulators with a focus on EZH2 in a few cancer systems, including castration-resistant prostate cancer (CRPC) cells, and malignant peripheral nerve sheath tumors (MPNSTs). These computational methods complement existing bioinformatics methodologies and will have broad applications in the study of cancer epigenetics and gene regulation. The proposed research will fill the knowledge gap between oncogenic drivers and downstream gene expression program, and could provide mechanistic support for development of novel targeted therapeutics for cancer precision medicine.
项目摘要 染色质在转录调控中起重要作用。染色质相关基因经常发生突变 在癌症中。深入研究染色质在基因调控中的作用,对于理解染色体的功能, 肿瘤发生和肿瘤进展的分子机制。作为一名经验丰富的计算生物学家, 在ChIP-seq生物信息学和表观遗传学方面的专业知识,我的研究重点是开发计算 染色质调控的高通量基因组数据分析和计算建模方法 的基因表达。在癌症生物学方面有了更多的独立研究训练,我将发展我的研究 计算机癌症表观遗传学计划,并发展独立的学术生涯。 最近的研究已经证明了针对细胞中活性开放区域的染色质调节剂的可行性。 基因组作为癌症治疗的新疗法。然而,染色质的背景特异性底物 调节子和染色质如何调节基因表达的潜在机制在很大程度上还不清楚。与 基于下一代测序的高通量基因组技术(包括ChIP-seq)的出现, DNase-seq和ATAC-seq,大量的基因组分析数据变得可用, 用综合计算方法系统地破译基因调控机制。 本项目的目标是开发新的定量和计算方法,用于研究 表观遗传基因调控和染色质调节因子在癌症中的功能。具体而言,我们建议 开发利用丰富的公共ChIP-seq,DNase-seq, 以及用于预测功能性调节元件和TF的ATAC-seq数据。首先(目标1),我们将开发 一种方法,预测功能增强子元件和相关的TF给定任何基因集使用公共 跨多种细胞类型组蛋白标记ChIP-seq数据。第二(目标2),我们将开发一个定量模型, 从配对末端DNase-seq或ATAC-seq鉴定核苷酸分辨染色质可及性动力学 对数据中的固有偏差进行校正。最后(目标3),我们将整合公共可用的DNase- seq、ATAC-seq和ChIP-seq数据,并系统地表征 染色质调节因子的功能,重点是EZH 2在一些癌症系统中的作用,包括去势抵抗性 前列腺癌(CRPC)细胞和恶性外周神经鞘瘤(MPNST)。这些计算 方法补充了现有的生物信息学方法,并将在以下研究中得到广泛的应用: 癌症表观遗传学和基因调控。这项研究将填补致癌基因之间的知识空白。 驱动程序和下游基因表达程序,并可以为开发 癌症精准医疗的新型靶向治疗方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chongzhi Zang其他文献

Chongzhi Zang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chongzhi Zang', 18)}}的其他基金

A multi-level bias correction model for bulk and single-cell CUT&Tag data
用于批量和单细胞切割的多级偏差校正模型
  • 批准号:
    10645980
  • 财政年份:
    2023
  • 资助金额:
    $ 19.24万
  • 项目类别:
Integrative computational models for functional epigenomics and transcriptional regulation
功能表观基因组学和转录调控的综合计算模型
  • 批准号:
    10005372
  • 财政年份:
    2019
  • 资助金额:
    $ 19.24万
  • 项目类别:
Integrative computational models for functional epigenomics and transcriptional regulation
功能表观基因组学和转录调控的综合计算模型
  • 批准号:
    10460972
  • 财政年份:
    2019
  • 资助金额:
    $ 19.24万
  • 项目类别:
Integrative computational models for functional epigenomics and transcriptional regulation
功能表观基因组学和转录调控的综合计算模型
  • 批准号:
    10228663
  • 财政年份:
    2019
  • 资助金额:
    $ 19.24万
  • 项目类别:
Integrative computational models for functional epigenomics and transcriptional regulation
功能表观基因组学和转录调控的综合计算模型
  • 批准号:
    10669742
  • 财政年份:
    2019
  • 资助金额:
    $ 19.24万
  • 项目类别:
Integrative computational models for functional epigenomics and transcriptional regulation
功能表观基因组学和转录调控的综合计算模型
  • 批准号:
    10809380
  • 财政年份:
    2019
  • 资助金额:
    $ 19.24万
  • 项目类别:
Quantitative Modeling for Chromatin Regulation of Gene Expression in Cancer
癌症基因表达染色质调控的定量模型
  • 批准号:
    9379863
  • 财政年份:
    2017
  • 资助金额:
    $ 19.24万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.24万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 19.24万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 19.24万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 19.24万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 19.24万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 19.24万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 19.24万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 19.24万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 19.24万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 19.24万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了