Quantitative Modeling for Chromatin Regulation of Gene Expression in Cancer
癌症基因表达染色质调控的定量模型
基本信息
- 批准号:9763334
- 负责人:
- 金额:$ 19.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2019-09-02
- 项目状态:已结题
- 来源:
- 关键词:ATAC-seqAlgorithmsBayesian AnalysisBindingBinding SitesBioinformaticsBiological ProcessCancer BiologyCellsChIP-seqChromatinChromatin ModelingChromatin StructureCommunitiesComplementComputer SimulationComputing MethodologiesDNase I hypersensitive sites sequencingDataData AnalysesDatabasesDeoxyribonucleasesDevelopmentDiseaseDistalEZH2 geneElementsEnhancersEpigenetic ProcessEventGene ExpressionGene Expression RegulationGenesGenetic Enhancer ElementGenomeGenomicsGoalsHistonesHumanKnowledgeLaboratoriesMalignant NeoplasmsMethodological StudiesMethodologyMethodsModelingMolecularMutateNeurofibrosarcomaNucleotidesOncogenicPatternPharmacotherapyPlayProteinsPublishingRegulationRegulator GenesRegulatory ElementResearchResearch TrainingResolutionRoleSignal TransductionSystemTechniquesTranscriptional Regulationbasecancer cellcancer therapycareercastration resistant prostate cancercell typecomputer frameworkdata resourceepigenetic regulationexperiencegenomic datagenomic profileshistone modificationinsightinterestknock-downnew therapeutic targetnext generation sequencingnovelnovel therapeuticsprecision oncologypredictive modelingprogramsprostate cancer cellpublic health relevancetranscription factortumor progressiontumorigenesisuser friendly software
项目摘要
PROJECT SUMMARY
Chromatin plays an essential role in transcriptional regulation. Chromatin-related genes are frequently mutated
in cancers. Dissecting the functions of chromatin in gene regulation is important for understanding the
molecular mechanisms of oncogenesis and tumor progression. As an experienced computational biologist with
expertise on ChIP-seq bioinformatics and epigenetics, my research has focused on developing computational
methodologies for high-throughput genomic data analysis and computational modeling on chromatin regulation
of gene expression. With more independent research training in cancer biology, I will develop my research
program on computational cancer epigenetics and develop an independent academic career.
Recent studies have demonstrated the feasibility of targeting chromatin regulators for active open regions in
the genome as novel therapeutics for cancer treatment. However, the context-specific substrates of chromatin
regulators and the mechanisms underlying how chromatin regulates gene expression are largely unclear.. With
the advent of next-generation sequencing based high-throughput genomic techniques including ChIP-seq,
DNase-seq, and ATAC-seq, a large amount of for genomic profiling data became available, making it possible
to systematically decipher the gene regulatory mechanisms with an integrative computational approach.
The objective of this project is to develop novel quantitative and computational methodologies for studying
epigenetic gene regulation and the functions of chromatin regulators in cancer. Specifically, we propose to
develop integrative computational methods that leverage the abundant public ChIP-seq, DNase-seq,
and ATAC-seq data for predicting functional regulatory elements and TFs. First (Aim 1), we will develop
a method that predicts the functional enhancer elements and associated TFs given any gene set using public
histone mark ChIP-seq data across multiple cell types. Second (Aim 2), we will develop a quantitative model to
identify the nucleotide-resolution chromatin accessibility dynamics from paired-end DNase-seq or ATAC-seq
data with correction of intrinsic biases in the data. Finally (Aim 3), we will integrate publicly available DNase-
seq, ATAC-seq, and ChIP-seq data in a comprehensive database and systematically characterize the
functions of chromatin regulators with a focus on EZH2 in a few cancer systems, including castration-resistant
prostate cancer (CRPC) cells, and malignant peripheral nerve sheath tumors (MPNSTs). These computational
methods complement existing bioinformatics methodologies and will have broad applications in the study of
cancer epigenetics and gene regulation. The proposed research will fill the knowledge gap between oncogenic
drivers and downstream gene expression program, and could provide mechanistic support for development of
novel targeted therapeutics for cancer precision medicine.
项目总结
染色质在转录调控中起着至关重要的作用。染色质相关基因经常发生突变
在癌症方面。剖析染色质在基因调控中的功能对于理解
肿瘤发生和肿瘤进展的分子机制。作为一名经验丰富的计算生物学家
在芯片序列生物信息学和表观遗传学方面的专业知识,我的研究重点是开发计算
关于染色质调节的高通量基因组数据分析和计算建模方法
关于基因表达的。随着更多的癌症生物学独立研究培训,我将发展我的研究
计算机癌症表观遗传学计划,并发展独立的学术生涯。
最近的研究证明了将染色质调节剂靶向于活跃的开放区域的可行性
基因组作为癌症治疗的新疗法。然而,染色质的特定于上下文的底物
染色质如何调控基因表达的调节机制和机制在很大程度上尚不清楚。使用
基于下一代测序的高通量基因组技术的出现包括芯片序列,
DNase-seq和atac-seq,提供了大量的基因组图谱数据,使之成为可能
用综合计算方法系统地破译基因调控机制。
这个项目的目标是开发新的定量和计算方法来研究
表观遗传基因调控和染色质调节剂在癌症中的作用。具体来说,我们建议
开发综合计算方法,利用丰富的公共芯片-SEQ,DNASE-SEQ,
以及用于预测功能调节元件和TF的ATAC-SEQ数据。首先(目标1),我们将发展
一种预测功能增强子元件和相关转录因子的方法,该方法给定任何基因集
组蛋白标记多种细胞类型芯片序列数据。第二(目标2),我们将开发一个量化模型来
从配对末端DNase-seq或atac-seq中鉴定核苷酸分辨染色质可及性动态
修正了数据中固有偏差的数据。最后(目标3),我们将整合公开可用的DNase-
综合数据库中的SEQ、ATAC-SEQ和CHIP-SEQ数据,并系统地描述
染色质调节剂的功能,重点是EZH2在几个癌症系统中的功能,包括抗去势的
前列腺癌(CRPC)细胞和恶性周围神经鞘瘤(MPNSTs)。这些计算量
方法是对现有生物信息学方法的补充,将在生物信息学研究中有广泛的应用
癌症表观遗传学和基因调控。拟议中的研究将填补致癌基因之间的知识空白
驱动程序和下游的基因表达计划,并可以为发展提供机制支持
癌症精准医学的新靶向疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chongzhi Zang其他文献
Chongzhi Zang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chongzhi Zang', 18)}}的其他基金
A multi-level bias correction model for bulk and single-cell CUT&Tag data
用于批量和单细胞切割的多级偏差校正模型
- 批准号:
10645980 - 财政年份:2023
- 资助金额:
$ 19.24万 - 项目类别:
Integrative computational models for functional epigenomics and transcriptional regulation
功能表观基因组学和转录调控的综合计算模型
- 批准号:
10005372 - 财政年份:2019
- 资助金额:
$ 19.24万 - 项目类别:
Integrative computational models for functional epigenomics and transcriptional regulation
功能表观基因组学和转录调控的综合计算模型
- 批准号:
10460972 - 财政年份:2019
- 资助金额:
$ 19.24万 - 项目类别:
Integrative computational models for functional epigenomics and transcriptional regulation
功能表观基因组学和转录调控的综合计算模型
- 批准号:
10228663 - 财政年份:2019
- 资助金额:
$ 19.24万 - 项目类别:
Integrative computational models for functional epigenomics and transcriptional regulation
功能表观基因组学和转录调控的综合计算模型
- 批准号:
10669742 - 财政年份:2019
- 资助金额:
$ 19.24万 - 项目类别:
Integrative computational models for functional epigenomics and transcriptional regulation
功能表观基因组学和转录调控的综合计算模型
- 批准号:
10809380 - 财政年份:2019
- 资助金额:
$ 19.24万 - 项目类别:
Quantitative Modeling for Chromatin Regulation of Gene Expression in Cancer
癌症基因表达染色质调控的定量模型
- 批准号:
9379863 - 财政年份:2017
- 资助金额:
$ 19.24万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 19.24万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 19.24万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 19.24万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 19.24万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 19.24万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 19.24万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 19.24万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 19.24万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 19.24万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 19.24万 - 项目类别:
Research Grant














{{item.name}}会员




