Mathematical and computational analysis for species tree inference

物种树推断的数学和计算分析

基本信息

  • 批准号:
    9295036
  • 负责人:
  • 金额:
    $ 38.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2019-04-30
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Understanding the evolutionary relationships between organisms is fundamental in a wide variety of problems in biology. This project investigates and develops new methods for inferring species relationships from genetic data, utilizing probabilistic models of gene trees conditional on a species tree. Its main goals are (1) to advance the mathematical understanding of these models, with a view toward species tree inference; (2) to develop improved methods for species tree inference by considering new and underutilized data types derived from gene trees, including clades, splits, unrooted gene trees, and ranked gene trees; (3) to validate theoretical, computational, and statistical properties of these new methods; (4) to produce software for use by empirical biologists. The project will identify gene tree summary statistics on which accurate inference can be based, and will employ these statistics to develop practical methods that can be used in the presence of missing data and under violations of model assumptions. The mathematical, statistical, and computational properties of both new and current methods will be studied to enable comparisons that can guide empirical applications. The model-based, probabilistic approach of this work provides a foundation for enhancing species tree inference from gene tree samples, and thus from genetic sequence data. The project addresses a promising methodological middle ground between computationally intensive full likelihood and Bayesian analyses, which are often infeasible for genomic-scale data sets, and tractable combinatorial methods, which often lack desirable statistical behaviors. The work will advance phylogenetic analysis by deepening knowledge of probabilistic models of gene tree discordance through analysis of the behavior of summary statistics. It will improve the practice of species tree inference by introducing new statistically consistent approaches and by developing theoretical and experimental understanding of the robustness of methods. Further, its use of mathematical techniques from probability, combinatorics, and algebraic statistics, as well as computational experiments employing simulation, will enhance mathematical evolutionary biology more generally.


项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Rhodes其他文献

John Rhodes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

REU Site: Research Experiences for Undergraduates in Algebra and Discrete Mathematics at Auburn University
REU 网站:奥本大学代数和离散数学本科生的研究经验
  • 批准号:
    2349684
  • 财政年份:
    2024
  • 资助金额:
    $ 38.7万
  • 项目类别:
    Continuing Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
  • 批准号:
    2400006
  • 财政年份:
    2024
  • 资助金额:
    $ 38.7万
  • 项目类别:
    Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
  • 批准号:
    2401360
  • 财政年份:
    2024
  • 资助金额:
    $ 38.7万
  • 项目类别:
    Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    $ 38.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies in Categorical Algebra
分类代数研究
  • 批准号:
    2348833
  • 财政年份:
    2024
  • 资助金额:
    $ 38.7万
  • 项目类别:
    Continuing Grant
RTG: Applied Algebra at the University of South Florida
RTG:南佛罗里达大学应用代数
  • 批准号:
    2342254
  • 财政年份:
    2024
  • 资助金额:
    $ 38.7万
  • 项目类别:
    Continuing Grant
Conference: Research School: Bridges between Algebra and Combinatorics
会议:研究学院:代数与组合学之间的桥梁
  • 批准号:
    2416063
  • 财政年份:
    2024
  • 资助金额:
    $ 38.7万
  • 项目类别:
    Standard Grant
Conference: Fairfax Algebra Days 2024
会议:2024 年费尔法克斯代数日
  • 批准号:
    2337178
  • 财政年份:
    2024
  • 资助金额:
    $ 38.7万
  • 项目类别:
    Standard Grant
CAREER: Leveraging Randomization and Structure in Computational Linear Algebra for Data Science
职业:利用计算线性代数中的随机化和结构进行数据科学
  • 批准号:
    2338655
  • 财政年份:
    2024
  • 资助金额:
    $ 38.7万
  • 项目类别:
    Continuing Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
  • 批准号:
    2414922
  • 财政年份:
    2024
  • 资助金额:
    $ 38.7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了