Computational models of subcallosal cingulate deep brain stimulation

胼胝体下扣带回脑深部刺激的计算模型

基本信息

  • 批准号:
    9263697
  • 负责人:
  • 金额:
    $ 5.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-04-01 至 2019-03-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Major depressive disorder (MDD) affects at least 10 % of the world population and globally ranks as the second leading cause of years lost to disability. Approximately a third of depressed patients fail to achieve remission; therefore, for a marked number of depressed individuals, currents treatments are not adequate. Deep brain stimulation (DBS) of the subcallosal cingulate white matter (SCCWM) has had success in treating, treatment resistant depression (TRD), but this therapy still requires scientific evolutio before it can be considered a clinical therapy. The overall research objective is to determine the theoretically optimal stimulation parameters, and in the long-term, evaluate prospectively the clinical outcomes in de novo patients. The first aim is to develop image-based computational models of the electric field in SCCWM DBS. We will use magnetic resonance (MR) images to define the geometry and electrical properties of the head, and computed tomography scans to determine the location of the DBS array. Six patients will be modeled: two responders, two non-responders that became responders, and two non-responders. This aim will generate one of the most anatomical and electrically detailed DBS electric field models ever created, which will then represent a "gold standard" for defining the level of detail necessary for accurate models of DBS. The second aim is to evaluate the neural response to SCCWM DBS. We hypothesize that target and non- target white matter tracts will be found amongst forceps minor, the uncinate fasciculus, the cingulum bundle, and short midline fibers projecting to subcortical structures. Axons will be modeled using cable theory, the trajectory of the axons will be defined by conducting probabilistic tractrography on a diffusion-weighted MR image, and multivariate statistical analyses will be used to correlate fiber activation (or lack of activation) with a response to stimulation. The outcome of this aim will be the identification of potential target white matter pathways that are necessary and/or sufficient for eliciting an antidepressant effect when stimulated. The third aim is to identify stimulation parameters that optimize the theoretical efficiency and selectivity of SCCWM DBS. By efficient, we mean using the least amount of electrical energy to activate target neural elements, and by selective, we mean the ability to activate target neural elements over non-target elements. The space of possible electrode configurations and stimulus waveforms is too large to be tackled by brute- force, so we use a numerical optimization algorithm to optimize stimulation parameters in the six model patients. This aim will establish a metric for improving the efficacy of SCCWM DBS, which we will test in future work. Successful completion of this research will advance our understanding of how activation of certain cortical and/or subcortical fiber pathways can produce an antidepressant effect in patients with TRD.
 描述(由申请人提供):重度抑郁症(MDD)影响至少10%的世界人口,并在全球范围内列为残疾年损失的第二大原因。大约三分之一的抑郁症患者未能达到缓解;因此, 抑郁症患者人数众多,目前的治疗是不够的。胼胝体下扣带白色物质(SCCWM)的脑深部电刺激(DBS)在治疗难治性抑郁症(TRD)方面取得了成功,但这种疗法在被认为是临床疗法之前仍然需要科学的发展。总体研究目标是确定理论上的最佳刺激参数,并在长期内前瞻性评价初治患者的临床结局。 第一个目标是开发基于图像的计算模型的电场SCCWM DBS。我们将使用磁共振(MR)图像来定义头部的几何形状和电气特性,并使用计算机断层扫描来确定DBS阵列的位置。将对6例患者进行建模:2例应答者、2例变为应答者的无应答者和2例无应答者。这一目标将生成有史以来最解剖和电气详细的DBS电场模型之一,然后将代表用于定义DBS精确模型所需的详细程度的“黄金标准”。 第二个目的是评估SCCWM DBS的神经反应。我们假设靶和非靶白色物质束将在小钳、钩束、扣带束和投射到皮质下结构的短中线纤维中发现。轴突将使用电缆理论建模,轴突的轨迹将通过在扩散加权MR图像上进行概率纤维束成像来定义,并且多变量统计分析将用于将纤维激活(或缺乏激活)与对刺激的响应相关联。这一目标的结果将是确定潜在的目标白色物质途径,这是必要的和/或足够的刺激时,引发抗抑郁作用。 第三个目的是确定优化理论的刺激参数, SCCWM DBS的效率和选择性。高效是指使用最少的电能来激活目标神经元,选择性是指激活目标神经元而不是非目标神经元的能力。可能的电极配置和刺激波形的空间太大而无法通过蛮力处理,因此我们使用数值优化算法来优化六个模型患者中的刺激参数。这一目标将建立一个衡量标准,以提高SCCWM DBS的疗效,我们将在未来的工作中进行测试。 这项研究的成功完成将促进我们对某些皮质和/或皮质下纤维通路的激活如何在TRD患者中产生抗抑郁作用的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bryan Howell其他文献

Bryan Howell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bryan Howell', 18)}}的其他基金

Computational models of subcallosal cingulate deep brain stimulation
胼胝体下扣带回脑深部刺激的计算模型
  • 批准号:
    9121983
  • 财政年份:
    2016
  • 资助金额:
    $ 5.71万
  • 项目类别:
Optimal Electrode Geometries for Efficient and Selective Deep Brain Stimulation
用于高效、选择性深部脑刺激的最佳电极几何形状
  • 批准号:
    8720075
  • 财政年份:
    2012
  • 资助金额:
    $ 5.71万
  • 项目类别:
Optimal Electrode Geometries for Efficient and Selective Deep Brain Stimulation
用于高效、选择性深部脑刺激的最佳电极几何形状
  • 批准号:
    8538262
  • 财政年份:
    2012
  • 资助金额:
    $ 5.71万
  • 项目类别:
Optimal Electrode Geometries for Efficient and Selective Deep Brain Stimulation
用于高效、选择性深部脑刺激的最佳电极几何形状
  • 批准号:
    8320034
  • 财政年份:
    2012
  • 资助金额:
    $ 5.71万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 5.71万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 5.71万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.71万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.71万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 5.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.71万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 5.71万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 5.71万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 5.71万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 5.71万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了