Optimal Electrode Geometries for Efficient and Selective Deep Brain Stimulation
用于高效、选择性深部脑刺激的最佳电极几何形状
基本信息
- 批准号:8320034
- 负责人:
- 金额:$ 3.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:Animal ModelAreaAxonBrainBrain regionCell NucleusCellsClinicalComputer SimulationCouplingDeep Brain StimulationDrug resistanceElectric CapacitanceElectric StimulationElectrical EngineeringElectrodesElementsEpilepsyEssential TremorEvaluationFelis catusFoundationsGenetic ProgrammingGoalsIn VitroInternal CapsuleLeadLifeMeasurementMeasuresMental DepressionMental disordersModelingMotorMotor CortexMovement DisordersNeuronsNeurostimulation procedures of spinal cord tissueObsessive-Compulsive DisorderOperative Surgical ProceduresOutcomeOutputParkinson DiseasePerformancePresynaptic TerminalsResearchResistanceRiskRoleSamplingScienceStimulusTechniquesTestingThalamic structureTissuesWorkclinical efficacycostcost effectivedesigneffective therapyelectric fieldelectric impedanceengineering designgray matterheuristicsimprovedin vivoinnovationnovelpresynapticprototyperelating to nervous systemresearch studyresponsesuccesswhite matter
项目摘要
DESCRIPTION (provided by applicant): Deep brain stimulation (DBS) is an effective treatment for movement disorders and a promising therapy for treating epilepsy and psychiatric disorders. Despite the clinical successes of DBS, there are several aspects of the therapy that can be improved. For example, surgeries to replace primary cell batteries, or to correct misplaced leads, increase the cost and risks of the therapy. The overall research objective is to design and test novel DBS electrode geometries that increase the power efficiency and selectivity of brain stimulation. The outcome will reduce the cost and risks associated with revision surgeries, making DBS a more cost effective and safer therapy, and it will also broaden our understanding of the role of electrode geometry in electrical stimulation. The first aim is to
use our biophysical model of electrical stimulation and engineering optimization to design electrodes that are more efficient at stimulating various neural elements. We will design two optimal electrode geometries for stimulating the white and grey matter regions of the brain, respectively, by coupling cable models of neurons, finite element models of electric fields, and a search heuristic, the genetic algorithm. The goal of this design optimization is to develop electrodes that are better suited to their intended anatomical target. The second aim is to measure experimentally the efficiency and selectivity of the optimized electrode designs during DBS in an animal model. We will quantify the electrical impedance of our electrode designs in vitro, and measure the in vivo stimulation efficiency and selectivity in anesthetized cats. The purpose of these experiments is to compare our results to the predications of the computational models from Aim 1, and to compare the performance of our optimized designs against the conventional DBS electrode used clinically (Medtronic model 3387). Successful execution of this research will impact the clinical efficacy of DBS, as well as other therapies using electrical
stimulation, including spinal cord stimulation. In the long-term, the research will help transform electrode design from an ad hoc practice to a calculated science.
PUBLIC HEALTH RELEVANCE: Deep brain stimulation (DBS) is an effective treatment for movement disorders, including Parkinson's disease and essential tremor, as well as a promising therapy for treating epilepsy and drug-resistance psychiatric disorders. However, despite the successes of DBS, there are still several areas where the therapy can be improved, such as reducing the number of surgeries required to replace batteries and to correct misplaced leads. Developing innovative approaches to increase the efficiency and selectivity of DBS will increase battery life and reduce the sensitivity of clinical outcomes to electrode (mis) placement, respectively, which will mitigate the cost and risks of battery and lead replacement surgery.
描述(由申请人提供):脑深部电刺激(DBS)是一种有效的运动障碍治疗方法,也是一种治疗癫痫和精神疾病的有前景的疗法。尽管DBS在临床上取得了成功,但该疗法仍有几个方面可以改进。例如,更换原电池或纠正错位的导线的手术增加了治疗的成本和风险。总体研究目标是设计和测试新型DBS电极几何形状,以提高脑刺激的功率效率和选择性。该结果将降低与翻修手术相关的成本和风险,使DBS成为更具成本效益和更安全的治疗方法,并且还将拓宽我们对电极几何形状在电刺激中的作用的理解。 第一个目标是
使用我们的电刺激和工程优化的生物物理模型来设计更有效地刺激各种神经元件的电极。我们将设计两个最佳的电极几何形状,分别刺激大脑的白色和灰质区域,通过耦合电缆模型的神经元,电场的有限元模型,和搜索启发式,遗传算法。该设计优化的目标是开发更适合其预期解剖目标的电极。 第二个目的是通过实验测量动物模型中DBS期间优化电极设计的效率和选择性。我们将在体外量化我们的电极设计的电阻抗,并在麻醉猫体内测量刺激效率和选择性。这些实验的目的是将我们的结果与目标1中计算模型的预测进行比较,并将我们优化设计的性能与临床使用的传统DBS电极(Medtronic型号3387)进行比较。 这项研究的成功执行将影响DBS的临床疗效,以及其他使用电刺激的治疗。
刺激,包括脊髓刺激。从长远来看,这项研究将有助于将电极设计从临时实践转变为计算科学。
公共卫生关系:脑深部电刺激(DBS)是治疗运动障碍(包括帕金森病和原发性震颤)的有效方法,也是治疗癫痫和耐药性精神疾病的有前途的疗法。然而,尽管DBS取得了成功,但仍有几个领域可以改进治疗,例如减少更换电池和纠正错位电极导线所需的手术次数。开发创新方法以提高DBS的效率和选择性将分别延长电池寿命和降低临床结局对电极(错误)放置的敏感性,这将降低电池和电极导线更换手术的成本和风险。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bryan Howell其他文献
Bryan Howell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bryan Howell', 18)}}的其他基金
Computational models of subcallosal cingulate deep brain stimulation
胼胝体下扣带回脑深部刺激的计算模型
- 批准号:
9263697 - 财政年份:2016
- 资助金额:
$ 3.16万 - 项目类别:
Computational models of subcallosal cingulate deep brain stimulation
胼胝体下扣带回脑深部刺激的计算模型
- 批准号:
9121983 - 财政年份:2016
- 资助金额:
$ 3.16万 - 项目类别:
Optimal Electrode Geometries for Efficient and Selective Deep Brain Stimulation
用于高效、选择性深部脑刺激的最佳电极几何形状
- 批准号:
8720075 - 财政年份:2012
- 资助金额:
$ 3.16万 - 项目类别:
Optimal Electrode Geometries for Efficient and Selective Deep Brain Stimulation
用于高效、选择性深部脑刺激的最佳电极几何形状
- 批准号:
8538262 - 财政年份:2012
- 资助金额:
$ 3.16万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 3.16万 - 项目类别:
Standard Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 3.16万 - 项目类别:
Major Research Instrumentation
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 3.16万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 3.16万 - 项目类别:
Research Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 3.16万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 3.16万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 3.16万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 3.16万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: OPP-PRF: Tracking Long-Term Changes in Lake Area across the Arctic
博士后奖学金:OPP-PRF:追踪北极地区湖泊面积的长期变化
- 批准号:
2317873 - 财政年份:2024
- 资助金额:
$ 3.16万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 3.16万 - 项目类别:
Standard Grant














{{item.name}}会员




