Social Media Signals for Post-traumatic Stress and Anxiety in Crisis-Inflicted Communities
受危机影响的社区中创伤后压力和焦虑的社交媒体信号
基本信息
- 批准号:9319296
- 负责人:
- 金额:$ 28.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-15 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdjustment DisordersAffectAffectiveAlgorithmsAnxietyAnxiety DisordersArchivesAreaArousalAttentionBehaviorBehavioralCognitiveCollaborationsCommunitiesComplementCuesCustomDataDetectionDiagnosisDiagnosticDisastersDistressEarly DiagnosisEarly InterventionEmotionalEventExhibitsExposure toFaceFacultyFeelingFrightGeneral PopulationGoalsGovernmentGrief reactionHealthHealth ProfessionalHealth ResourcesHealth behaviorHumanImpairmentInstitutesInterventionInvestigationKnowledgeLaboratory StudyLanguageLeadLifeLinguisticsLinkLongitudinal StudiesMeasuresMemoryMental DepressionMental HealthMental Health ServicesMental disordersMetadataMethodsModelingMood DisordersMoodsNatureOccupationalOutcomePatternPharmaceutical PreparationsPhysiologicalPoliciesPopulationPost-Traumatic Stress DisordersPredispositionPrevention strategyPrincipal InvestigatorProcessPropertyPsychologistPsychologyPublic HealthReactionRecoveryRecurrenceRehabilitation therapyReportingResearchRiskRisk FactorsRoleSamplingSchoolsSignal TransductionSocial NetworkSocial supportSourceStressStructureSurveysSurvivorsSymptomsSyndromeTechniquesTechnologyTexasTextTextilesThinkingTimeTraumaUniversitiesVariantWorkWritingaustinbehavior measurementbehavioral healthbehavioral studybiological adaptation to stressbrief interventioncognitive performancedata miningdesigndisaster survivoreffective interventionempoweredexperiencehelp-seeking behaviorhigh risk populationinstrumentinteractive computingintervention programlensnovelphrasesphysical conditioningpost-traumatic stressprevention serviceprogramspsychologicpublic health relevanceresponsesensorsocialsocial capitalsocial mediasocial networking websitesocial stigmastress disorderstress related disorderstressorsuccesssymptom treatmentsymptomatologytechnology developmenttooltraumatic event
项目摘要
DESCRIPTION (provided by applicant): Millions of people undergo traumatic experiences annually. While acute distress is a normative response to trauma, a small percent of the people who have undergone traumatic experiences continue to exhibit severe stress reactions long after the trauma. The posttraumatic reactions may include intrusive memories, hypervig- ilant arousal, impaired concentration, depression, emotional detachment from others, and disengagement from aspects of life that provide meaning and self-fulfillment. In functional assessments these recurrent reactions seriously impair intrapersonal, interpersonal, and occupational functioning. Despite these ramifications, post-traumatic stress disorders are under-reported, and in many cases go completely undetected. Barriers to help-seeking include: lack of knowledge about predisposition symptoms, the unavailability of appropriate remedial/prevention services, the fear of the social stigma of mental illness, lack of social support, or assumptions that the mood changes are a part of the overwhelming nature of post-crisis life. In recent times, many crisis rehabilitation efforts have recognized these challenges, and have incorporated access to mental health services in their intervention and support programs. However, treatment efforts, that typically comprise medication, therapy, or both, are more successful with early intervention; in fact, the likelihood of achieving full recovery decline as the illness lengthens. Social media such as Twitter and Facebook are increasingly serving an important role in crisis situations: aggregating and disseminating information, while providing opportunities for reflection and discussion of collective grief and trauma. These platforms thus provide an opportunity to investigate if post-traumatic stress and anxiety can be detected on a macro scale by studying the affective responses of crisis-inflicted populations. Due to social media's archival record, reactions to societal crisis and traumatic happenings can be tracked longitudinally. We propose to mine behavioral data from these platforms to better understand the range of responses of people to crises. By applying state-of-the-art techniques from text and social network analytics, we will go be- yond population-level estimates of crisis behavior, to gauge the social, psychological, emotional, and linguistic attributes of specific crisis-laden communities, and the relationship of these behavioral attributes to key mental and public health outcomes in a crisis context. Specifically, we will accomplish the following research aims: 1. Design data mining techniques that can intelligently filter social media posts for crisis-relevant content, incorporating statistical correction methods that can extract population representative samples. 2. Use linguistic signals and social network metadata to identify key communities in the crisis-laden population. 3. Develop behavioral measures from the activities of these communities that reflect the extent of their risk to stress disorders from the crisis situation. Ths will include measures that automatically expand and refine existing technologies to match community-specific language and dialects, which can vary dramatically in social media writing, as well as factor in the unique context of crisis events. 4. Perform a longitudinal study of the behavior of crisis-embroiled communities, identifying the factors that indicate especially high-ris groups. If successful, this research will (a) bring to the fore variables related to the exacerbaton of (or even predisposition to) PTSD, (b) enable new mechanisms to identify at-risk communities in a near real-time fashion, and (c) lend a complementary perspective on current research around trauma diagnosis, which relies typically on laboratory studies and surveys. On a practical note, a potential link between behavior manifested in social media in the context of a crisis, and anxiety and post-traumatic stress symptomatology can also augment traditional efforts in providing valuable interventions as a part of disaster response. This work is a close collaboration with computational linguist and faculty of School of Interactive Computing at Georgia Institute of Technology, Dr. Jacob Eisenstein, who is an expert in the discovery of social relationships latent in linguistic data, and Dr. James Pennebaker, a social psychologist and faculty in the Department of Psychology at the University of Texas, Austin, whose expertise is in the area of psychological interpretation of language cues.
描述(申请人提供):每年有数百万人经历创伤经历。虽然急性痛苦是对创伤的正常反应,但在经历过创伤的人中,有一小部分人在创伤后很长一段时间内仍表现出严重的应激反应。创伤后的反应可能包括侵扰性记忆、过度兴奋、注意力不集中、抑郁、与他人的情感分离,以及脱离生活中提供意义和自我实现的方面。在功能评估中,这些反复出现的反应严重损害个人、人际和职业功能。尽管有这些后果,但创伤后应激障碍的报告很少,而且在许多情况下完全没有被发现。寻求帮助的障碍包括:缺乏对易感症状的了解,得不到适当的补救/预防服务,害怕精神疾病的社会污名,缺乏社会支持,或认为情绪变化是危机后生活压倒性特征的一部分。最近,许多危机恢复努力已经认识到这些挑战,并将获得心理健康服务纳入其干预和支持计划。然而,治疗努力,通常包括药物治疗或治疗,或两者兼而有之,早期干预更成功;事实上,随着疾病的延长,实现完全康复的可能性下降。推特和脸书等社交媒体在危机局势中发挥着越来越重要的作用:汇总和传播信息,同时提供反思和讨论集体悲痛和创伤的机会。因此,这些平台提供了一个机会,通过研究受危机影响的人群的情感反应,研究是否可以在宏观范围内检测到创伤后应激障碍和焦虑。由于社交媒体的档案记录,对社会危机和创伤事件的反应可以纵向跟踪。我们建议从这些平台挖掘行为数据,以更好地了解人们对危机的反应范围。通过应用文本和社交网络分析中的最新技术,我们将对危机行为进行第二次人口水平的估计,以衡量特定危机社区的社会、心理、情感和语言属性,以及这些行为属性与危机背景下关键心理和公共健康结果的关系。具体来说,我们将完成以下研究目标:1.设计数据挖掘技术,能够智能地过滤社交媒体帖子中与危机相关的内容,结合统计校正方法,可以提取具有人口代表性的样本。2.使用语言信号和社交网络元数据来确定危机人群中的关键社区。3.根据这些社区的活动制定行为衡量标准,以反映他们在危机情况下患应激障碍的风险程度。这将包括自动扩展和改进现有技术的措施,以匹配社区特定的语言和方言,这些语言和方言在社交媒体写作中可能会有很大差异,并将危机事件的独特背景考虑在内。4.对深陷危机的社区的行为进行纵向研究,找出表明RIS特别高的群体的因素。如果成功,这项研究将:(A)突出与创伤后应激障碍(甚至是创伤后应激障碍的易感性)接力棒有关的变量;(B)使新的机制能够以近乎实时的方式识别处于危险中的社区;(C)为目前围绕创伤诊断的研究提供一个补充视角,这些研究通常依赖实验室研究和调查。从实际情况来看,社交媒体在危机背景下表现出的行为与焦虑和创伤后应激症状之间的潜在联系,也可以加强传统努力,提供有价值的干预措施,作为应对灾害的一部分。这项工作是与计算语言学家和佐治亚理工学院交互计算学院的教员密切合作的,雅各布·艾森斯坦博士是发现语言数据中潜在的社会关系的专家,詹姆斯·彭尼贝克博士是德克萨斯大学奥斯汀分校心理学系的社会心理学家和教员,他的专长是语言线索的心理解释。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Munmun De Choudhury其他文献
Munmun De Choudhury的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Munmun De Choudhury', 18)}}的其他基金
Leveraging Social Media Data and Machine Learning to Optimize Treatment Paradigms for Youth with Schizophrenia
利用社交媒体数据和机器学习优化青少年精神分裂症的治疗模式
- 批准号:
9914128 - 财政年份:2019
- 资助金额:
$ 28.53万 - 项目类别:
Leveraging Social Media Data and Machine Learning to Optimize Treatment Paradigms for Youth with Schizophrenia
利用社交媒体数据和机器学习优化青少年精神分裂症的治疗模式
- 批准号:
10369003 - 财政年份:2019
- 资助金额:
$ 28.53万 - 项目类别:
Social Media Signals for Post-traumatic Stress and Anxiety in Crisis-Inflicted Communities
受危机影响的社区中创伤后压力和焦虑的社交媒体信号
- 批准号:
9115639 - 财政年份:2014
- 资助金额:
$ 28.53万 - 项目类别:
Social Media Signals for Post-traumatic Stress and Anxiety in Crisis-Inflicted Communities
受危机影响的社区中创伤后压力和焦虑的社交媒体信号
- 批准号:
8802476 - 财政年份:2014
- 资助金额:
$ 28.53万 - 项目类别:














{{item.name}}会员




