Leveraging Social Media Data and Machine Learning to Optimize Treatment Paradigms for Youth with Schizophrenia
利用社交媒体数据和机器学习优化青少年精神分裂症的治疗模式
基本信息
- 批准号:10369003
- 负责人:
- 金额:$ 62.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-15 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAdolescent and Young AdultAdoptedAdoptionAffectAftercareBehaviorBehavioralBig DataBiometryCaringChronicCircadian RhythmsClinicalClinical DataClinical PsychologyClinical ResearchClinical TrialsCognitionCognitiveComputational TechniqueComputersComputing MethodologiesDataData CollectionDeteriorationDevelopmentDisorientationDoctor of PhilosophyEarly DiagnosisEarly InterventionEmerging TechnologiesEmotionalEvaluationEvidence based treatmentFamilyFeedbackFoundationsGoalsHealthHospitalizationImprove AccessIndividualInterventionInvestigationKnowledgeLeadLearningLinguisticsMachine LearningMental DepressionMental HealthMental disordersMethodsMonitorMoodsNational Institute of Mental HealthOutcomePatient-Focused OutcomesPatientsPhasePhenotypePopulationPrivacyPsychiatric therapeutic procedurePsychiatryPsychologyPsychosesPsychotic DisordersRelapseReportingResearchResearch EthicsResearch MethodologyRiskRoleSamplingSchizophreniaScientistSeveritiesSiteSocial FunctioningSocial PsychologySourceStigmatizationStrategic PlanningSuicideSurfaceSymptomsTechniquesTestingTexasTheoretical modelTimeUniversitiesValidationViolenceWorkYouthbasebiological researchbiomarker developmentclinical decision supportclinical efficacyclinical heterogeneitycohortcomputational basisdeep learningdigitaldigital mediadigital modelsdisabilitydisease classificationdisorder later incidence preventionearly psychosisevidence baseexperiencefamily burdenfirst episode schizophreniahigh riskimprovedinnovative technologiesintervention programlensmachine learning methodmedical complicationmultidisciplinarynatural languagenovelnovel strategiespeerpersonalized interventionpreventprospectivepsychosis riskpsychosocialpsychotic symptomsrecruitrelapse patientsrelapse predictionrelapse riskresponsesocialsocial mediasocial observationsstemsupport toolstreatment optimizationtreatment responsetreatment strategyvolunteerwillingnessyoung adult
项目摘要
Abstract
Schizophrenia constitutes a chronic and disabling illness. While patients show high rates of response to treatment
after a first-episode of schizophrenia, the long-term course of the illness is typically characterized by frequent re-
lapses, persistence of symptoms, and enduring cognitive and functional deficits. Despite the prioritization of
relapse prevention as a treatment goal, about four out of five patients experience a relapse within the first five
years of treatment. Relapses are known to have serious psychosocial, educational, or vocational implications in
young adults—a population at high risk of psychosis. However, current psychiatric ability to recognize indicators
of relapse in order to prevent escalation of psychotic symptoms is markedly limited. Challenges stem from a lack
of availability of comprehensive information about early warning signs, and reliance on fixed time point sampling
of cross-sectional data as well as patient or family reported observations, that is subject to recall bias, or on clin-
ician sought information, that needs frequent and timely contact. The present proposal seeks to address these
gaps in early psychosis treatment, by leveraging patient-generated and patient-volunteered social media data,
and developing and validating machine learning approaches for “digital phenotyping” and relapse prediction. Our
proposed work is founded on the observation that social media sites have emerged as prominent platforms of
emotional and linguistic expression—young adults are among the heaviest users of social media. The work signif-
icantly advances the research agenda and extensive pilot investigations of the team, who a) have demonstrated
that social media data of individuals can serve as a powerful “lens” toward understanding and inferring mental
health state, illness course, and likelihood of relapse, including among young adults with early psychosis; and
b) have been involved in examining the role of emergent technologies, like social media, in improving access to
and delivery of psychiatric care. Aim 1 will provide theoretically-grounded and clinically meaningful methods for
extracting and modeling digital phenotypes and symptoms from social media data of young adult early psychosis
patients. Then in Aim 2, we will develop and evaluate machine learning methods that will utilize the extracted
social media digital phenotypes to infer patient-specific personalized risk of relapse, and identify its antecedents.
Finally, Aim 3 will develop a two-faceted validation framework, to assess the statistical and clinical efficacy and
utility of the social media derived inferences of psychosis and relapse in influencing clinical outcomes and in
facilitating evidence-based treatment. To accomplish these aims, the project brings together a strong multidisci-
plinary team, combining expertise in social media analytics, psychiatry, psychology, natural language analysis,
machine learning, information privacy, and research ethics. Our novel approach offers unprecedented opportuni-
ties to initiate the adoption of personalized, responsive, and preemptive evidence-based strategies in treatment of
psychosis. The knowledge will set the stage for future research on launching large-scale trials aimed to develop
interventions that diminish the severity of relapses, or prevent their occurrence altogether.
摘要
精神分裂症是一种慢性致残性疾病。虽然患者对治疗的反应率很高,
在精神分裂症的第一次发作后,疾病的长期过程通常以频繁的复发为特征,
失误,症状持续存在,以及持久的认知和功能缺陷。尽管优先考虑
预防复发作为治疗目标,大约五分之四的患者在最初的五年内经历复发。
多年的治疗。众所周知,复发具有严重的社会心理、教育或职业影响,
年轻的成年人-精神病的高风险人群。然而,目前的精神病识别指标的能力,
复发,以防止升级的精神病症状是显着有限的。挑战源于缺乏
关于预警信号的全面信息的可用性,以及对固定时间点抽样的依赖
横截面数据以及患者或家庭报告的观察结果,这是受回忆偏见,或临床-
医生寻求信息,需要经常和及时联系。本提案旨在解决这些问题
通过利用患者生成和患者自愿的社交媒体数据,
以及开发和验证用于“数字表型”和复发预测的机器学习方法。我们
拟议的工作是建立在观察到社会媒体网站已成为突出的平台,
情感和语言表达-年轻人是社交媒体的最大用户。工作标志-
icantly推进研究议程和广泛的试点调查的团队,谁a)已经证明
个人的社交媒体数据可以作为一个强大的“透镜”来理解和推断心理
健康状况、病程和复发的可能性,包括患有早期精神病的年轻人;以及
B)参与了研究新兴技术的作用,如社交媒体,在改善获得
和提供精神病治疗目标1将提供理论基础和临床意义的方法,
从年轻成人早期精神病的社交媒体数据中提取和建模数字表型和症状
患者然后在目标2中,我们将开发和评估机器学习方法,这些方法将利用提取的
社交媒体数字表型,以推断患者特定的个性化复发风险,并确定其前因。
最后,目标3将制定一个两方面的验证框架,以评估统计和临床有效性,
社交媒体衍生的精神病和复发的推断在确定临床结局和
促进循证治疗。为了实现这些目标,该项目汇集了一个强大的多学科,
初级团队,结合社交媒体分析,精神病学,心理学,自然语言分析,
机器学习、信息隐私和研究伦理。我们的新方法提供了前所未有的机会-
关系,以启动采用个性化,响应,和先发制人的循证策略,在治疗
精神病这些知识将为未来开展大规模试验的研究奠定基础,
减少复发的严重程度或完全预防复发的干预措施。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tracking group identity through natural language within groups.
- DOI:10.1093/pnasnexus/pgac022
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Ashokkumar, Ashwini;Pennebaker, James W.
- 通讯作者:Pennebaker, James W.
A Social Media Study on Demographic Differences in Perceived Job Satisfaction.
关于工作满意度感知的人口统计差异的社交媒体研究。
- DOI:10.1145/3449241
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Saha,Koustuv;Yousuf,Asra;Hickman,Louis;Gupta,Pranshu;Tay,Louis;DEChoudhury,Munmun
- 通讯作者:DEChoudhury,Munmun
A Real-Time Eating Detection System for Capturing Eating Moments and Triggering Ecological Momentary Assessments to Obtain Further Context: System Development and Validation Study.
- DOI:10.2196/20625
- 发表时间:2020-12-18
- 期刊:
- 影响因子:5
- 作者:Bin Morshed M;Kulkarni SS;Li R;Saha K;Roper LG;Nachman L;Lu H;Mirabella L;Srivastava S;De Choudhury M;de Barbaro K;Ploetz T;Abowd GD
- 通讯作者:Abowd GD
Social media conversations reveal large psychological shifts caused by COVID-19's onset across U.S. cities.
- DOI:10.1126/sciadv.abg7843
- 发表时间:2021-09-24
- 期刊:
- 影响因子:13.6
- 作者:Ashokkumar A;Pennebaker JW
- 通讯作者:Pennebaker JW
Measuring Self-Esteem with Passive Sensing.
- DOI:10.1145/3421937.3421952
- 发表时间:2020-05
- 期刊:
- 影响因子:0
- 作者:Morshed MB;Saha K;De Choudhury M;Abowd GD;Plötz T
- 通讯作者:Plötz T
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Munmun De Choudhury其他文献
Munmun De Choudhury的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Munmun De Choudhury', 18)}}的其他基金
Leveraging Social Media Data and Machine Learning to Optimize Treatment Paradigms for Youth with Schizophrenia
利用社交媒体数据和机器学习优化青少年精神分裂症的治疗模式
- 批准号:
9914128 - 财政年份:2019
- 资助金额:
$ 62.99万 - 项目类别:
Social Media Signals for Post-traumatic Stress and Anxiety in Crisis-Inflicted Communities
受危机影响的社区中创伤后压力和焦虑的社交媒体信号
- 批准号:
9115639 - 财政年份:2014
- 资助金额:
$ 62.99万 - 项目类别:
Social Media Signals for Post-traumatic Stress and Anxiety in Crisis-Inflicted Communities
受危机影响的社区中创伤后压力和焦虑的社交媒体信号
- 批准号:
8802476 - 财政年份:2014
- 资助金额:
$ 62.99万 - 项目类别:
Social Media Signals for Post-traumatic Stress and Anxiety in Crisis-Inflicted Communities
受危机影响的社区中创伤后压力和焦虑的社交媒体信号
- 批准号:
9319296 - 财政年份:2014
- 资助金额:
$ 62.99万 - 项目类别:
相似海外基金
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 62.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The impact of changes in social determinants of health on adolescent and young adult mental health during the COVID-19 pandemic: A longitudinal study of the Asenze cohort in South Africa
COVID-19 大流行期间健康社会决定因素的变化对青少年和年轻人心理健康的影响:南非 Asenze 队列的纵向研究
- 批准号:
10755168 - 财政年份:2023
- 资助金额:
$ 62.99万 - 项目类别:
A Priority Setting Partnership to Establish a Patient, Caregiver, and Clinician-identified Research Agenda for Adolescent and Young Adult Cancer in Canada
建立优先合作伙伴关系,以建立患者、护理人员和临床医生确定的加拿大青少年和年轻人癌症研究议程
- 批准号:
480840 - 财政年份:2023
- 资助金额:
$ 62.99万 - 项目类别:
Miscellaneous Programs
Incidence and Time on Onset of Cardiovascular Risk Factors and Cardiovascular Disease in Adult Survivors of Adolescent and Young Adult Cancer and Association with Exercise
青少年和青年癌症成年幸存者心血管危险因素和心血管疾病的发病率和时间以及与运动的关系
- 批准号:
10678157 - 财政年份:2023
- 资助金额:
$ 62.99万 - 项目类别:
Fertility experiences among ethnically diverse adolescent and young adult cancer survivors: A population-based study
不同种族青少年和年轻成年癌症幸存者的生育经历:一项基于人群的研究
- 批准号:
10744412 - 财政年份:2023
- 资助金额:
$ 62.99万 - 项目类别:
Treatment development for refractory leukemia using childhood/adolescent, and young adult leukemia biobank
利用儿童/青少年和青年白血病生物库开发难治性白血病的治疗方法
- 批准号:
23K07305 - 财政年份:2023
- 资助金额:
$ 62.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular design of Two-Way Player CAR-T cells to overcome disease/antigen heterogeneity of childhood, adolescent, and young adult cancers
双向 CAR-T 细胞的分子设计,以克服儿童、青少年和年轻成人癌症的疾病/抗原异质性
- 批准号:
23H02874 - 财政年份:2023
- 资助金额:
$ 62.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Using Tailored mHealth Strategies to Promote Weight Management among Adolescent and Young Adult Cancer Survivors
使用量身定制的移动健康策略促进青少年和年轻癌症幸存者的体重管理
- 批准号:
10650648 - 财政年份:2023
- 资助金额:
$ 62.99万 - 项目类别:
Developing and Testing a Culturally Tailored Mobile Health and Social MediaPhysical Activity Intervention Among Adolescent and Young Adult ChildhoodCancer Survivors
开发和测试针对青少年和青年儿童癌症幸存者的文化定制移动健康和社交媒体体育活动干预
- 批准号:
10736526 - 财政年份:2023
- 资助金额:
$ 62.99万 - 项目类别:
Pilot Project 1: Creating Bridges to Reproductive Health Care for Rural Adolescent and Young Adult Cancer Survivors
试点项目 1:为农村青少年和青年癌症幸存者搭建生殖保健桥梁
- 批准号:
10762146 - 财政年份:2023
- 资助金额:
$ 62.99万 - 项目类别:














{{item.name}}会员




