Social Media Signals for Post-traumatic Stress and Anxiety in Crisis-Inflicted Communities
受危机影响的社区中创伤后压力和焦虑的社交媒体信号
基本信息
- 批准号:8802476
- 负责人:
- 金额:$ 30.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-15 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAcuteAdjustment DisordersAffectAffectiveAlgorithmsAnxietyAnxiety DisordersAreaArousalBehaviorBehavioralCognitiveCollaborationsCommunitiesComplementCuesDataDetectionDiagnosisDiagnosticDisastersDistressEarly DiagnosisEarly InterventionEmotionalEventExhibitsExposure toFaceFacultyFeelingFrightGeneral PopulationGoalsGovernmentGovernment AgenciesGrief reactionHealthHealth ProfessionalHealth ResourcesHealth behaviorHumanImpairmentInstitutesInterventionInvestigationKnowledgeLaboratory StudyLanguageLeadLifeLinguisticsLinkLongitudinal StudiesMeasuresMemoryMental HealthMental Health ServicesMental disordersMetadataMethodsMiningModelingMood DisordersMoodsNatureOccupationalOutcomePatternPerformancePharmaceutical PreparationsPhysiologicalPoliciesPopulationPost-Traumatic Stress DisordersPredispositionPrevention strategyPrincipal InvestigatorProcessPropertyPsychologistPsychologyPublic HealthReactionRecoveryRecurrenceRehabilitation therapyReportingResearchRiskRisk FactorsRoleSamplingSchoolsSignal TransductionSocial NetworkSocial supportSourceStressStructureSurveysSurvivorsSymptomsSyndromeTechniquesTechnologyTexasTextTextilesThinkingTimeTraumaUniversitiesVariantWorkWritingaustinbehavior measurementbehavioral healthbiological adaptation to stressbrief interventiondata miningdepressive symptomsdesigndisaster survivoreffective interventionempoweredexperiencehelp-seeking behaviorhigh riskinstrumentinteractive computingintervention programlensmeetingsnovelphrasesphysical conditioningpost-traumatic stressprevention serviceprogramspsychologicpublic health relevanceresponsesensorsocialsocial capitalsocial stigmastress disorderstress related disorderstressorsuccesstechnology developmenttoolweb-based social networking
项目摘要
DESCRIPTION (provided by applicant): Millions of people undergo traumatic experiences annually. While acute distress is a normative response to trauma, a small percent of the people who have undergone traumatic experiences continue to exhibit severe stress reactions long after the trauma. The posttraumatic reactions may include intrusive memories, hypervig- ilant arousal, impaired concentration, depression, emotional detachment from others, and disengagement from aspects of life that provide meaning and self-fulfillment. In functional assessments these recurrent reactions seriously impair intrapersonal, interpersonal, and occupational functioning. Despite these ramifications, post-traumatic stress disorders are under-reported, and in many cases go completely undetected. Barriers to help-seeking include: lack of knowledge about predisposition symptoms, the unavailability of appropriate remedial/prevention services, the fear of the social stigma of mental illness, lack of social support, or assumptions that the mood changes are a part of the overwhelming nature of post-crisis life. In recent times, many crisis rehabilitation efforts have recognized these challenges, and have incorporated access to mental health services in their intervention and support programs. However, treatment efforts, that typically comprise medication, therapy, or both, are more successful with early intervention; in fact, the likelihood of achieving full recovery decline as the illness lengthens. Social media such as Twitter and Facebook are increasingly serving an important role in crisis situations: aggregating and disseminating information, while providing opportunities for reflection and discussion of collective grief and trauma. These platforms thus provide an opportunity to investigate if post-traumatic stress and anxiety can be detected on a macro scale by studying the affective responses of crisis-inflicted populations. Due to social media's archival record, reactions to societal crisis and traumatic happenings can be tracked longitudinally. We propose to mine behavioral data from these platforms to better understand the range of responses of people to crises. By applying state-of-the-art techniques from text and social network analytics, we will go be- yond population-level estimates of crisis behavior, to gauge the social, psychological, emotional, and linguistic attributes of specific crisis-laden communities, and the relationship of these behavioral attributes to key mental and public health outcomes in a crisis context. Specifically, we will accomplish the following research aims: 1. Design data mining techniques that can intelligently filter social media posts for crisis-relevant content, incorporating statistical correction methods that can extract population representative samples. 2. Use linguistic signals and social network metadata to identify key communities in the crisis-laden population. 3. Develop behavioral measures from the activities of these communities that reflect the extent of their risk to stress disorders from the crisis situation. Ths will include measures that automatically expand and refine existing technologies to match community-specific language and dialects, which can vary dramatically in social media writing, as well as factor in the unique context of crisis events. 4. Perform a longitudinal study of the behavior of crisis-embroiled communities, identifying the factors that indicate especially high-ris groups. If successful, this research will (a) bring to the fore variables related to the exacerbaton of (or even predisposition to) PTSD, (b) enable new mechanisms to identify at-risk communities in a near real-time fashion, and (c) lend a complementary perspective on current research around trauma diagnosis, which relies typically on laboratory studies and surveys. On a practical note, a potential link between behavior manifested in social media in the context of a crisis, and anxiety and post-traumatic stress symptomatology can also augment traditional efforts in providing valuable interventions as a part of disaster response. This work is a close collaboration with computational linguist and faculty of School of Interactive Computing at Georgia Institute of Technology, Dr. Jacob Eisenstein, who is an expert in the discovery of social relationships latent in linguistic data, and Dr. James Pennebaker, a social psychologist and faculty in the Department of Psychology at the University of Texas, Austin, whose expertise is in the area of psychological interpretation of language cues.
描述(由申请人提供):每年有数百万人经历创伤经历。虽然急性痛苦是对创伤的正常反应,但有一小部分经历过创伤经历的人在创伤后很长一段时间内仍然表现出严重的应激反应。创伤后反应可能包括侵入性记忆、过度兴奋、注意力不集中、抑郁、与他人的情感分离,以及脱离提供意义和自我实现的生活方面。在功能评估中,这些反复出现的反应严重损害了自我、人际和职业功能。 尽管有这些后果,但创伤后应激障碍的报告不足,在许多情况下完全没有被发现。寻求帮助的障碍包括:缺乏对易感症状的了解,无法获得适当的补救/预防服务,担心精神疾病的社会耻辱,缺乏社会支持,或认为情绪变化是危机后生活的一部分。近年来,许多危机康复工作已经认识到这些挑战,并将获得心理健康服务纳入其干预和支持计划。然而,治疗工作,通常包括药物治疗,治疗或两者兼而有之,早期干预更成功;事实上,随着疾病的延长,实现完全康复的可能性下降。 Twitter和Facebook等社交媒体在危机局势中发挥着越来越重要的作用:汇集和传播信息,同时为反思和讨论集体悲痛和创伤提供机会。因此,这些平台提供了一个机会,通过研究受危机影响的人群的情感反应,调查是否可以在宏观上发现创伤后压力和焦虑。由于社交媒体的档案记录,对社会危机和创伤事件的反应可以纵向跟踪。 我们建议从这些平台中挖掘行为数据,以更好地了解人们对危机的反应范围。通过应用来自文本和社交网络分析的最先进技术,我们将对危机行为进行人口水平的估计,以衡量特定危机社区的社会,心理,情感和语言属性,以及这些行为属性与危机背景下关键心理和公共卫生结果的关系。具体而言,我们将完成以下研究目标:1.设计数据挖掘技术,可以智能地过滤社交媒体帖子中与危机相关的内容,并结合统计校正方法,可以提取人口代表性样本。 2.使用语言信号和社交网络元数据来识别充满危机的人群中的关键社区。 3.从这些社区的活动中制定行为措施,以反映他们在危机情况下患应激障碍的风险程度。这将包括自动扩展和改进现有技术的措施,以匹配社区特定的语言和方言,这些语言和方言在社交媒体写作中可能会有很大差异,并考虑到危机事件的独特背景。 4.对危机社区的行为进行纵向研究,确定表明特别是高风险群体的因素。 如果成功的话,这项研究将(a)带来与PTSD恶化(甚至易感性)相关的变量,(B)使新的机制能够以近乎实时的方式识别风险社区,以及(c)为当前围绕创伤诊断的研究提供补充视角,这些研究通常依赖于实验室研究和调查。从实际角度来看,在危机背景下社交媒体上表现出的行为与焦虑和创伤后应激障碍之间的潜在联系也可以加强传统的努力,提供有价值的干预措施,作为灾害应对的一部分。 这项工作是与格鲁吉亚理工学院交互计算学院的计算语言学家和教师,雅各布·爱森斯坦博士,他是发现语言数据中潜在的社会关系的专家,以及詹姆斯·彭尼贝克博士,德克萨斯大学奥斯汀分校心理学系的社会心理学家和教师密切合作。他的专长是语言线索的心理学解读。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Munmun De Choudhury其他文献
Munmun De Choudhury的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Munmun De Choudhury', 18)}}的其他基金
Leveraging Social Media Data and Machine Learning to Optimize Treatment Paradigms for Youth with Schizophrenia
利用社交媒体数据和机器学习优化青少年精神分裂症的治疗模式
- 批准号:
9914128 - 财政年份:2019
- 资助金额:
$ 30.34万 - 项目类别:
Leveraging Social Media Data and Machine Learning to Optimize Treatment Paradigms for Youth with Schizophrenia
利用社交媒体数据和机器学习优化青少年精神分裂症的治疗模式
- 批准号:
10369003 - 财政年份:2019
- 资助金额:
$ 30.34万 - 项目类别:
Social Media Signals for Post-traumatic Stress and Anxiety in Crisis-Inflicted Communities
受危机影响的社区中创伤后压力和焦虑的社交媒体信号
- 批准号:
9115639 - 财政年份:2014
- 资助金额:
$ 30.34万 - 项目类别:
Social Media Signals for Post-traumatic Stress and Anxiety in Crisis-Inflicted Communities
受危机影响的社区中创伤后压力和焦虑的社交媒体信号
- 批准号:
9319296 - 财政年份:2014
- 资助金额:
$ 30.34万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 30.34万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 30.34万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 30.34万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 30.34万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 30.34万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 30.34万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 30.34万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 30.34万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 30.34万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 30.34万 - 项目类别:
Standard Grant














{{item.name}}会员




