The Function and Mechanisms of Autophagy in Spinal Cord Injury
自噬在脊髓损伤中的功能和机制
基本信息
- 批准号:9271264
- 负责人:
- 金额:$ 33.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAffectAttenuatedAutophagocytosisAutophagosomeAxonBiochemicalBiogenesisBiological ModelsCell DeathCell SurvivalDataDefectDegradation PathwayDependenceDevelopmentDisaccharidesDiseaseFRAP1 geneFunctional disorderFutureHistologicHomeostasisImpairmentIn VitroInjuryLysosomesMediatingMembraneModelingMolecularMotorMusNerve DegenerationNeuronsOutcomePathway interactionsPharmaceutical PreparationsPharmacologyPhospholipase A2PlayProcessPublic HealthQuality ControlRattusRecoveryRecovery of FunctionReporterResearchRoleSirolimusSliceSpecificitySpinal CordSpinal Cord ContusionsSpinal cord injuryStressTechniquesTestingTherapeuticTimeTransgenic MiceTraumaTrehaloseUnited StatesUp-Regulationaxon injurybasecell injurycell typedisabilityfunctional outcomesgenetic manipulationimprovedin vitro Modelin vivoinhibition of autophagymTOR Inhibitormotor function improvementmouse modelneuron apoptosisneuron lossnovelnovel therapeutic interventionnovel therapeuticsrestoration
项目摘要
PROJECT SUMMARY
A major barrier to development of novel treatments against spinal cord injury (SCI) is incomplete
understanding of the mechanisms of injury and recovery. The overall aim of our research is to determine the
molecular mechanisms and contribution of autophagy to neuronal cell damage and death after SCI, in order to
allow future development of rational therapies. Autophagy is a lysosome-dependent degradation pathway
essential for normal cellular homeostasis and protection from neurodegeneration. However, when lysosomal
function is compromised autophagy can also contribute to cell death. Accumulation of autophagosomes has
been noted after SCI, but its mechanisms and function remain unknown. Additionally, lysosomal function and
the efficiency of autophagic degradation (flux), has not been assessed after SCI. Based on our preliminary
data, we propose and will test the hypothesis that early after SCI dysfunction of the autophagy-lysosomal
pathway contributes to neuronal cell damage and death and its restoration can promote long-term recovery.
We will use autophagy-reporter and autophagy-deficient transgenic mice and in vivo and in vitro
pharmacological and genetic manipulations to determine the mechanisms of autophagy after SCI and
demonstrate its influence on neuronal cell death and functional outcomes after SCI. AIM 1 will determine the
mechanisms of lysosomal and autophagy dysfunction after SCI. Complimentary in vivo and in vitro
approaches will be combined with novel techniques such as ex vivo spinal cord slice cultures to test the
hypothesis that autophagy flux is impaired early after SCI, reflecting cytoplasmic phospholipase A2 (cPLA2)
mediated lysosomal membrane permeabilization (LMP). AIM 2 will determine functional consequences of
restoring autophagy-lysosomal pathway after SCI. Pharmacological inducers of lysosomal biogenesis and
autophagy flux, Trehalose and Torin1, will be used in wild type and autophagy deficient Becn1+/- mice to test
the hypothesis that stimulating lysosomal biogenesis will restore autophagy-lysosomal pathway and result in
improved functional outcomes. AIM 3 will determine the influence of autophagy-lysosomal pathway on
axonal damage and neuronal cell survival after SCI. The contribution of impaired autophagy to axonal
damage and neuronal cell death after SCI will be examined in vivo; we will also determine whether improving
autophagic flux can attenuate neuronal cell damage and death after SCI. We hypothesize that impaired
autophagy flux contributes to ER stress induced axonal damage and neuronal apoptosis after SCI.
Our study will for the first time determine the function and the mechanisms of autophagy in neuronal cell
damage and death after SCI. Additionally we will determine the optimal approaches for manipulation of
autophagy-lysosomal pathway to improve functional outcomes after SCI, thus opening potential novel
treatment avenues.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Junfang Wu其他文献
Junfang Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Junfang Wu', 18)}}的其他基金
The function and mechanisms of voltage-gated proton channel Hv1 in spinal cord injury
电压门控质子通道Hv1在脊髓损伤中的作用及机制
- 批准号:
9902687 - 财政年份:2020
- 资助金额:
$ 33.79万 - 项目类别:
The function and mechanisms of voltage-gated proton channel Hv1 in spinal cord injury
电压门控质子通道Hv1在脊髓损伤中的作用及机制
- 批准号:
10164879 - 财政年份:2020
- 资助金额:
$ 33.79万 - 项目类别:
The function and mechanisms of voltage-gated proton channel Hv1 in spinal cord injury
电压门控质子通道Hv1在脊髓损伤中的作用及机制
- 批准号:
10617804 - 财政年份:2020
- 资助金额:
$ 33.79万 - 项目类别:
The function and mechanisms of voltage-gated proton channel Hv1 in spinal cord injury
电压门控质子通道Hv1在脊髓损伤中的作用及机制
- 批准号:
10398137 - 财政年份:2020
- 资助金额:
$ 33.79万 - 项目类别:
The Function and Mechanisms of Autophagy in Spinal Cord Injury
自噬在脊髓损伤中的功能和机制
- 批准号:
9174652 - 财政年份:2016
- 资助金额:
$ 33.79万 - 项目类别:
The new roles of the autophagy-lysosomal pathway in spinal cord injury-mediated dementia
自噬-溶酶体途径在脊髓损伤介导的痴呆中的新作用
- 批准号:
10114910 - 财政年份:2016
- 资助金额:
$ 33.79万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 33.79万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 33.79万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 33.79万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 33.79万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 33.79万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 33.79万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 33.79万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 33.79万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 33.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 33.79万 - 项目类别:
Studentship














{{item.name}}会员




